Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Accelerated infant growth increases risk of future asthma symptoms in children

Accelerated growth in the first three months of life, but not fetal growth, is associated with an increased risk of asthma symptoms in young children, according to a new study from The Generation R Study Group at Erasmus Medical Center in the Netherlands.

"We know that low birth weight is associated with an increased risk of asthma symptoms in children, but the effects of specific fetal and infant growth patterns on this risk had not been examined yet," said researcher Liesbeth Duijts, MD, PhD. "In our study, weight gain acceleration in early infancy was associated with an increased risk of asthma symptoms in children of preschool age, independent of fetal growth patterns, suggesting that early infancy might be a critical period for the development of asthma."

The findings were published online ahead of print publication in the American Thoracic Society's American Journal of Respiratory and Critical Care Medicine.

This study was embedded in the Generation R Study, a population-based prospective cohort study, and included 5,125 children who were followed from fetal life through the age of four. Information on asthma symptoms was obtained by questionnaires at the ages of 1, 2, 3, and 4.

No consistent relationships between fetal length and weight growth during different trimesters and the development of asthma symptoms were observed. Accelerated weight gain from birth to 3 months following normal fetal growth was associated with increased risks of asthma symptoms, including wheezing (overall odds ratio (OR) 1.44 (95% confidence interval (CI): 1.22, 1.70), shortness of breath: 1.32 (1.12, 1.56), dry cough: 1.16 (1.01, 1.34), and persistent phlegm: 1.30 (1.07, 1.58)). The associations between accelerated infant growth and risk of developing asthma symptoms were independent of other fetal growth patterns and tended to be stronger among children of atopic mothers.

"Our results suggest that the relationship between infant weight gain and asthma symptoms is not due to the accelerated growth of fetal growth-restricted infants only," said Dr. Duijts. "While the mechanisms underlying this relationship are unclear, accelerated weight growth in early life might adversely affect lung growth and might be associated with adverse changes in the immune system."

The study had a few limitations, including the possibility of measurement error in the estimation of fetal weight and the use of self-report for asthma symptoms.

"Further research is needed to replicate our findings and explore the mechanisms that contribute to the effects of growth acceleration in infancy on respiratory health," concluded Dr. Duijts. "The effects of infant growth patterns on asthma phenotypes in later life should also be examined."

About the American Journal of Respiratory Research and Critical Care Medicine:

With an impact factor of 10.191, the AJRRCM is a peer-reviewed journal published by the American Thoracic Society. It aims to publish the most innovative science and the highest quality reviews, practice guidelines and statements in the pulmonary, critical care and sleep-related fields.

Founded in 1905, the American Thoracic Society is the world's leading medical association dedicated to advancing pulmonary, critical care and sleep medicine. The Society's 15,000 members prevent and fight respiratory disease around the globe through research, education, patient care and advocacy.

Nathaniel Dunford | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht Resolving the mystery of preeclampsia
21.10.2016 | Universitätsklinikum Magdeburg

nachricht New potential cancer treatment using microwaves to target deep tumors
12.10.2016 | University of Texas at Arlington

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>