Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A new target for lymphoma therapy

10.12.2009
Gene enhancer is responsible for activating cancer-causing genes in B cells

Researchers at the Program in Cellular and Molecular Medicine and the Immune Disease Institute at Children's Hospital Boston (PCMM/IDI) have found a link between a common mutation that can lead to cancer and a distant gene regulator that enhances its activity. Discovery of this relationship could lead to drugs targeting B-cell lymphomas, including Burkitt's lymphoma, an aggressive cancer in children, as well as multiple myelomas and other blood-related cancers.

Lymphomas often originate in B cells, the same cells that produce antibodies to help fight infections. A B cell can become cancerous if a gene known as c-myc leaps to another section of DNA (the IgH region, responsible for building antibodies), fuses with it, and somehow becomes over-activated. Scientists have wondered for years how this oncogenic activation occurs, in particular what component in the IgH region activates c-myc. The new study, published in the Dec. 10 issue of Nature, identifies this regulatory component, and marks the first time researchers are able to understand how this movement of genes, or "chromosomal translocation," can hijack a B cell's operation badly enough to lead to cancer.

"IgH-to-myc translocation is the classic example of activation of an oncogene in cancer," says Frederick Alt, PhD, scientific director of PCMM/IDI and senior author of the study. "But nobody really understood how it works."

Aberrant DNA translocations can occur during two different stages of a B cell's development: during a process known as VDJ recombination, when a progenitor B cell creates an antibody to fight a specific pathogen, or during class switch recombination, when a mature B cell gives its antibody a different strategy to fight infection (changing from an IgM to an IgG antibody, for example). Based on their past research , Alt and his colleagues decided to focus on one part of the IgH region called IgH 3' regulatory region (IgH3'RR). They had already shown IgH3'RR to be a far-reaching gene regulator that enhances the transcription of neighboring genes in the IgH region during class switch recombination.

To investigate the relationship between IgH3'RR and lymphoma, the team, led by Alt and first author Monica Gostissa, PhD, of PCMM/IDI, deleted the IgH3'RR in a line of mutant mice previously generated in the Alt lab. These mice routinely develop a B-cell lymphoma in which c-myc is translocated to the IgH region of the DNA. However, without IgH3'RR, mature B cells did not become cancerous, suggesting that mature B cells -- from which most human lymphomas originate -- need IgH3'RR in order to develop into lymphoma.

"The study shows that the IgH3'RR is a key element for turning on the cancer-causing activity of c-myc after it is translocated to the IgH locus," says Alt. He noted that the study also shows that the cancer-causing activity of the IgH3'RR on c-myc can extend over surprisingly long chromosomal distances.

The study suggests the IgH3'RR as a new target for arresting lymphomas and other blood-related cancers that arise from mature B cells. Though inactivating IgH3'RR can impair a B cell's versatility in creating different classes of antibodies, it would not leave a patient immune-deficient because the B cells would retain some of their activity, says Gostissa. Furthermore, such a treatment would be reversible.

The next step is for the researchers to see what eliminating IgH3'RR will do to existing tumors, and then to create a cell-based drug screening assay to test for possible IgH3'RR inhibitors.

The study was funded by grants from the National Institutes of Health and the Leukemia and Lymphoma Society of America (including funds from the de Villiers International Achievement Award). Alt is an investigator of the Howard Hughes Medical Institute.

Monica Gostissa, Catherine T. Yan, Julia M. Bianco, Michel Cogne, Eric Pinaud and Frederick W. Alt. "Long-range Oncogenic Activation of IgH/c-myc Translocations by the IgH 3' Regulatory Region."

Nature. Dec. 10, 2009.

Children's Hospital Boston is home to the world's largest research enterprise based at a pediatric medical center, where its discoveries have benefited both children and adults since 1869. More than 500 scientists, including eight members of the National Academy of Sciences, 13 members of the Institute of Medicine and 12 members of the Howard Hughes Medical Institute comprise Children's research community. Founded as a 20-bed hospital for children, Children's Hospital Boston today is a 396-bed comprehensive center for pediatric and adolescent health care grounded in the values of excellence in patient care and sensitivity to the complex needs and diversity of children and families. Children's also is the primary pediatric teaching affiliate of Harvard Medical School.

Rob Graham | EurekAlert!
Further information:
http://www.childrenshospital.org/newsroom

More articles from Health and Medicine:

nachricht Hot cars can hit deadly temperatures in as little as one hour
24.05.2018 | Arizona State University

nachricht 3D images of cancer cells in the body: Medical physicists from Halle present new method
16.05.2018 | Martin-Luther-Universität Halle-Wittenberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

12th COMPAMED Spring Convention: Innovative manufacturing processes of modern implants

28.05.2018 | Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

 
Latest News

International Workshop Sees Central Role for Solar in Transforming the World Energy Economy

28.05.2018 | Seminars Workshops

Cognitive Power Electronics 4.0 is gaining momentum

28.05.2018 | Trade Fair News

Organic light-emitting diodes become brighter and more durable

28.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>