Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A new target for lymphoma therapy

10.12.2009
Gene enhancer is responsible for activating cancer-causing genes in B cells

Researchers at the Program in Cellular and Molecular Medicine and the Immune Disease Institute at Children's Hospital Boston (PCMM/IDI) have found a link between a common mutation that can lead to cancer and a distant gene regulator that enhances its activity. Discovery of this relationship could lead to drugs targeting B-cell lymphomas, including Burkitt's lymphoma, an aggressive cancer in children, as well as multiple myelomas and other blood-related cancers.

Lymphomas often originate in B cells, the same cells that produce antibodies to help fight infections. A B cell can become cancerous if a gene known as c-myc leaps to another section of DNA (the IgH region, responsible for building antibodies), fuses with it, and somehow becomes over-activated. Scientists have wondered for years how this oncogenic activation occurs, in particular what component in the IgH region activates c-myc. The new study, published in the Dec. 10 issue of Nature, identifies this regulatory component, and marks the first time researchers are able to understand how this movement of genes, or "chromosomal translocation," can hijack a B cell's operation badly enough to lead to cancer.

"IgH-to-myc translocation is the classic example of activation of an oncogene in cancer," says Frederick Alt, PhD, scientific director of PCMM/IDI and senior author of the study. "But nobody really understood how it works."

Aberrant DNA translocations can occur during two different stages of a B cell's development: during a process known as VDJ recombination, when a progenitor B cell creates an antibody to fight a specific pathogen, or during class switch recombination, when a mature B cell gives its antibody a different strategy to fight infection (changing from an IgM to an IgG antibody, for example). Based on their past research , Alt and his colleagues decided to focus on one part of the IgH region called IgH 3' regulatory region (IgH3'RR). They had already shown IgH3'RR to be a far-reaching gene regulator that enhances the transcription of neighboring genes in the IgH region during class switch recombination.

To investigate the relationship between IgH3'RR and lymphoma, the team, led by Alt and first author Monica Gostissa, PhD, of PCMM/IDI, deleted the IgH3'RR in a line of mutant mice previously generated in the Alt lab. These mice routinely develop a B-cell lymphoma in which c-myc is translocated to the IgH region of the DNA. However, without IgH3'RR, mature B cells did not become cancerous, suggesting that mature B cells -- from which most human lymphomas originate -- need IgH3'RR in order to develop into lymphoma.

"The study shows that the IgH3'RR is a key element for turning on the cancer-causing activity of c-myc after it is translocated to the IgH locus," says Alt. He noted that the study also shows that the cancer-causing activity of the IgH3'RR on c-myc can extend over surprisingly long chromosomal distances.

The study suggests the IgH3'RR as a new target for arresting lymphomas and other blood-related cancers that arise from mature B cells. Though inactivating IgH3'RR can impair a B cell's versatility in creating different classes of antibodies, it would not leave a patient immune-deficient because the B cells would retain some of their activity, says Gostissa. Furthermore, such a treatment would be reversible.

The next step is for the researchers to see what eliminating IgH3'RR will do to existing tumors, and then to create a cell-based drug screening assay to test for possible IgH3'RR inhibitors.

The study was funded by grants from the National Institutes of Health and the Leukemia and Lymphoma Society of America (including funds from the de Villiers International Achievement Award). Alt is an investigator of the Howard Hughes Medical Institute.

Monica Gostissa, Catherine T. Yan, Julia M. Bianco, Michel Cogne, Eric Pinaud and Frederick W. Alt. "Long-range Oncogenic Activation of IgH/c-myc Translocations by the IgH 3' Regulatory Region."

Nature. Dec. 10, 2009.

Children's Hospital Boston is home to the world's largest research enterprise based at a pediatric medical center, where its discoveries have benefited both children and adults since 1869. More than 500 scientists, including eight members of the National Academy of Sciences, 13 members of the Institute of Medicine and 12 members of the Howard Hughes Medical Institute comprise Children's research community. Founded as a 20-bed hospital for children, Children's Hospital Boston today is a 396-bed comprehensive center for pediatric and adolescent health care grounded in the values of excellence in patient care and sensitivity to the complex needs and diversity of children and families. Children's also is the primary pediatric teaching affiliate of Harvard Medical School.

Rob Graham | EurekAlert!
Further information:
http://www.childrenshospital.org/newsroom

More articles from Health and Medicine:

nachricht Usher syndrome: Gene therapy restores hearing and balance
25.09.2017 | Institut Pasteur

nachricht MRI contrast agent locates and distinguishes aggressive from slow-growing breast cancer
25.09.2017 | Case Western Reserve University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent

25.09.2017 | Power and Electrical Engineering

Usher syndrome: Gene therapy restores hearing and balance

25.09.2017 | Health and Medicine

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>