Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

More than a sign of sleepiness, yawning may cool the brain

20.09.2011
Though considered a mark of boredom or fatigue, yawning might also be a trait of the hot-headed. Literally.

A study led by Andrew Gallup, a postdoctoral research associate in Princeton University's Department of Ecology and Evolutionary Biology, is the first involving humans to show that yawning frequency varies with the season and that people are less likely to yawn when the heat outdoors exceeds body temperature.

Gallup and his co-author Omar Eldakar, a postdoctoral fellow in the University of Arizona's Center for Insect Science, report this month in the journal Frontiers in Evolutionary Neuroscience that this seasonal disparity indicates that yawning could serve as a method for regulating brain temperature.

Gallup and Eldakar documented the yawning frequency of 160 people in the winter and summer in Tucson, Ariz., with 80 people for each season. They found that participants were more likely to yawn in the winter, as opposed to the summer when ambient temperatures were equal to or exceeding body temperature. The researchers concluded that warmer temperatures provide no relief for overheated brains, which, according to the thermoregulatory theory of yawning, stay cool via a heat exchange with the air drawn in during a yawn.

Gallup describes the findings as follows:

This provides additional support for the view that the mechanisms controlling the expression of yawning are involved in thermoregulatory physiology. Despite numerous theories posited in the past few decades, very little experimental research has been done to uncover the biological function of yawning, and there is still no consensus about its purpose among the dozen or so researchers studying the topic today.

"Enter the brain cooling, or thermoregulatory, hypothesis, which proposes that yawning is triggered by increases in brain temperature, and that the physiological consequences of a yawn act to promote brain cooling. I participated in a study [published in Frontiers in Evolutionary Neuroscience in September 2010] that confirmed this dynamic after we observed changes in the brain temperature of rats before and after the animals yawned. The cooling effect of yawning is thought to result from enhanced blood flow to the brain caused by stretching of the jaw, as well as countercurrent heat exchange with the ambient air that accompanies the deep inhalation.

"According to the brain cooling hypothesis, it is the temperature of the ambient air that gives a yawn its utility. Thus yawning should be counterproductive -- and therefore suppressed -- in ambient temperatures at or exceeding body temperature because taking a deep inhalation of air would not promote cooling. In other words, there should be a 'thermal window' or a relatively narrow range of ambient temperatures in which to expect highest rates of yawning.

"To test this theory in humans, I worked with Omar Eldakar to conduct a field-observational experiment that explored the relationship between ambient temperature and yawning frequency. We measured the incidence of yawning among people outdoors during the summer and winter months in Arizona. Summer conditions provided temperatures that matched or slightly exceeded body temperature (an average of 98.6 degrees Fahrenheit) with relatively low humidity, while winter conditions exhibited milder temperatures (71 degrees Fahrenheit on average) and slightly higher humidity. We randomly selected 160 pedestrians (80 for each season) and, because yawning is contagious, had them view images of people yawning.

"Our study accordingly showed a higher incidence of yawning across seasons when ambient temperatures were lower, even after statistically controlling for other features such as humidity, time spent outside and the amount of sleep the night before. Nearly half of the people in the winter session yawned, as opposed to less than a quarter of summer participants.

"Furthermore, when analyzing data for each season separately, we observed that yawning was related to the length of time a person spent outside exposed to the climate conditions. This was particularly true during the summer when the proportion of individuals yawning dropped significantly as the length of time spent outside increased prior to testing. Nearly 40 percent of participants yawned within the first five minutes outside, but the percentage of summertime yawners dropped to less than 10 percent thereafter. An inverse effect was observed in the winter, but the proportion of people who yawned increased only slightly for those who spent more than five minutes outdoors.

"This is the first report to show that yawning frequency varies from season to season. The applications of this research are intriguing, not only in terms of basic physiological knowledge, but also for better understanding diseases and conditions, such as multiple sclerosis or epilepsy, that are accompanied by frequent yawning and thermoregulatory dysfunction. These results provide additional support for the view that excessive yawning may be used as a diagnostic tool for identifying instances of diminished thermoregulation."

Gallup is available to discuss his research with interested members of the news media and can be contacted at a.c.gallup@gmail.com, or through Princeton science writer Morgan Kelly at (609) 258-5729, or mgnkelly@princeton.edu.

This research was supported, by a grant from the National Institutes of Health.

Morgan Kelly | EurekAlert!
Further information:
http://www.princeton.edu

More articles from Health and Medicine:

nachricht Chances to treat childhood dementia
24.07.2017 | Julius-Maximilians-Universität Würzburg

nachricht World first: Massive thrombosis removed during early pregnancy
20.07.2017 | Universitätsspital Bern

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

Ultrathin device harvests electricity from human motion

24.07.2017 | Power and Electrical Engineering

Scientists announce the quest for high-index materials

24.07.2017 | Materials Sciences

ADIR Project: Lasers Recover Valuable Materials

24.07.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>