Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

More than a third of high-risk leukemia patients respond to an experimental new drug

10.12.2012
'It caught us by surprise, how well this works.' -- Mark Levis, M.D., Ph.D.

A new drug for patients with acute myeloid leukemia (AML) marked by a specific type of genetic mutation has shown surprising promise in a Phase II clinical trial.

In more than a third of participants, the leukemia was completely cleared from the bone marrow, and as a result, many of these patients were able to undergo potentially curative bone marrow transplants, according to investigators at the Johns Hopkins Kimmel Cancer Center and nine other academic medical centers around the world. Many of the participants who did well with the new drug, quizartinib or AC220, had failed to respond to prior therapies.

"We can put two-thirds to three-quarters of adults with AML into remission with chemotherapy, but there's a 50 percent chance of the disease coming back, which usually ends up being fatal," says Mark Levis, M.D., Ph.D., lead investigator on the study and associate professor of oncology and medicine at Johns Hopkins. "Many patients in this trial were able to go on to receive a potentially life-saving bone marrow transplant. It caught us by surprise how well it works," he adds.
A report on the study is expected to be presented December 9 during a press briefing at the American Society of Hematology's annual meeting in Atlanta.

For the clinical trial, researchers enrolled 137 AML patients, the majority of whom carried a mutation in a gene called FLT3-ITD within their leukemia cells. The FLT3 gene produces an enzyme that signals bone marrow stem cells to divide and replenish. In about a quarter of patients with AML, the disease mutates FLT3 so that the enzyme stays on permanently, causing rapid growth of leukemia cells and making the condition harder to treat.

"A FLT3-ITD mutation tells us that, typically, patients will need very intensive chemotherapy just to achieve a remission, and then the disease will regrow quickly," Levis says. "So, we have learned to try to perform a bone marrow transplant soon after we get the patient into remission, before the cancer relapses." Quizartinib, which blocks the FLT3 enzyme, and is available in liquid oral form, is so potent that it typically starts working in just two days, Levis says, though it may take up to 60 days to completely eliminate AML cells from the bone marrow.
At Johns Hopkins and nine other centers, the 137 AML recruited patients received quizartinib at a starting dose of 90 mg/day for women and 135 mg/day for men, and were treated continuously during 28-day cycles. Study participants either had relapsed, did not respond to second-line chemotherapy or had relapsed following hematopoietic stem cell transplantation.

Forty-four percent (44) of the 99 participants with a FLT3-ITD mutation experienced some form of complete remission, typically one in which the leukemia was cleared from the bone marrow, but the patient still needed blood and platelet transfusions. Thirty-four percent (13) of the 38 participants in whom the FLT3-ITD mutation was not detectable experienced this type of response.

The most common side effects with quizartinib were nausea (38 percent), anemia (29 percent), QT prolongation (an abnormality found on an EKG; 26 percent), vomiting (26 percent), febrile neutropenia (development of fever in someone with low white blood cell count; 25 percent), diarrhea (20 percent), and fatigue (20 percent). Fourteen patients (10 percent) experienced side effects severe enough to discontinue taking the drug. Investigators have been testing lower doses of the medication since the trial to reduce side effects, Levis says.

Long-term survival from the therapy is still unknown, Levis says, but of the group of 137 patients, 47 (34 percent) were able to receive a transplant after responding to quizartinib. Some of these patients have survived two years after treatment with no disease recurrence.

Based on results, the company that makes the drug, Ambit Biosciences, is planning larger Phase III trials, in which patients who have the FLT3 mutation will receive either quizartinib or chemotherapy after random grouping. Meanwhile, Levis and other physicians are continuing to study the drug in a clinical trial testing lower doses.

The centers participating in the trial were: Abramson Cancer Center, University of Pennsylvania; Hôpital Saint-Louis, Université Paris; University Hospital of Ulm, Germany; Goethe University of Frankfurt, Germany; Hopital de Versailles, Le Chesnay, France; Bologna University School of Medicine, Italy; University of Washington, Seattle; Cardiff University School of Medicine, United Kingdom; University of Texas MD Anderson Cancer Center, Houston. Levis is a consultant for Ambit Biosciences Inc., manufacturers of quizartinib (AC220). This relationship has been disclosed and is under the management of the Johns Hopkins University School of Medicine Conflict of Interest Committee.

Vanessa Wasta | EurekAlert!
Further information:
http://www.jhmi.edu

Further reports about: AC220 AML Biosciences Cancer FLT3-ITD Germany Medicine bone marrow bone marrow transplant leukemia cells

More articles from Health and Medicine:

nachricht Penn studies find promise for innovations in liquid biopsies
30.03.2017 | University of Pennsylvania School of Medicine

nachricht 'On-off switch' brings researchers a step closer to potential HIV vaccine
30.03.2017 | University of Nebraska-Lincoln

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

'On-off switch' brings researchers a step closer to potential HIV vaccine

30.03.2017 | Health and Medicine

Penn studies find promise for innovations in liquid biopsies

30.03.2017 | Health and Medicine

An LED-based device for imaging radiation induced skin damage

30.03.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>