Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

'Wiring' in the Brain Influences Personality

24.11.2008
Some people are constantly seeking a new kick; some prefer to stick to tried and tested things. Which group you belong to seems to be connected, inter alia, with the 'wiring' of specific centres of the brain.

This was discovered by scientists at the University of Bonn using a new method. Even how much acceptance people seek is apparently also determined by nerve fibres in the brain. The study will appear in the next issue of the journal Nature Neuroscience (doi: 10.1038/nn.2228).

Have you got the new iPhone yet? Do you like changing jobs now and again because you get bored otherwise? Do you go on holiday to different places every year? Then maybe your neural connection between ventral striatum and hippocampus is particularly well developed. Both of them are centres in the brain. The reward system which urges us to take action is located in the striatum, whereas the hippocampus is responsible for specific memory functions.

In innovation-oriented people, both of these centres apparently interact particularly well. At least this is the supposition of the scientists from Bonn, Michael X. Cohen and Dr. Bernd Weber. If the hippocampus identifies an experience as new, it then sends the correspond-ing feedback to the striatum. There certain neurotransmitters are then released which lead to positive feelings. With people who constantly seek new experiences, striatum and hippocampus are evidently wired particularly well. The two researchers were able to show this in the survey now being published.

Method revolutionises the exploration of the brain

Up to now, it has been extremely difficult to make the individual 'wiring' of the brain visible. 'In principle this was only possible using cross sections of the brain of deceased people, which in addition had to be stained in a complex process,' Dr. Weber explains. Thanks to a new method this is now a lot easier. With modern MRI you can actually determine in which directions the water in the tissue diffuses. Nerve fibres are an impenetrable obstacle for tissue fluid. It can only flow along them. These 'directional' streams of water are visible in the tomography image. 'With this hazard-free method we can work on completely new issues related to the function of the brain,' Cohen says enthusiastically.

In the current study the Bonn scientists focused on the 'wiring' of the striatum. Moreover, the test candidates had to choose descriptions that characterised their personality best from a questionnaire, e.g. 'I like to try out new things just for fun or because it’s a challenge' or alternatively 'I prefer to stay at home rather than travelling or investigating new things.'

By contrast, descriptions such as 'I want to please other people as much as possible' or 'I don't care whether other people like me or the way I do things', were about social accept-ance. Here too the researchers noticed a link. 'The stronger the connection between frontal lobe and ventral striatum, the more distinctive the desire for recognition by that person’s environment,' Weber says. That is not quite unexpected. For example, it is known that people with defects of the frontal lobe violate social norms more frequently.

The Bonn scientists wish to confirm their results even more. In experiments they would like to investigate whether people actually behave differently depending on the 'wiring' of their brain.

Dr. Bernd Weber | alfa
Further information:
http://www.ucdavis.edu
http://www.lifeandbrain.com
http://www.uni-bonn.de

More articles from Health and Medicine:

nachricht Biofilm discovery suggests new way to prevent dangerous infections
23.05.2017 | University of Texas at Austin

nachricht Another reason to exercise: Burning bone fat -- a key to better bone health
19.05.2017 | University of North Carolina Health Care

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>