Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Twinkle, twinkle kidney stone: With a push you could be gone

01.02.2012
Space researchers develop ultrasound technology that detects, treats kidney stones

Just the mention of kidney stones can cause a person to cringe. They are often painful and sometimes difficult to remove, and 10 percent of the population will suffer from them. In space, the risk of developing kidney stones is exacerbated due to environmental conditions. The health risk is compounded by the fact that resource limitations and distance from Earth could restrict treatment options.

Scientists with the National Space Biomedical Research Institute (NSBRI) are developing an ultrasound technology that could overcome some medical care challenges associated with kidney stone treatment. The new technology detects stones with advanced ultrasound imaging based on a process called "Twinkling Artifact" and provides treatment by "pushing" the stone with focused ultrasound. This technology could not only be beneficial for health care in space, but could also alter the treatment of kidney stones on Earth.

The project is led by NSBRI Smart Medical Systems and Technology Team Principal Investigator Dr. Lawrence Crum and Co-Investigator Dr. Michael Bailey; both are researchers at the Applied Physics Laboratory at the University of Washington (APL-UW). Bailey said their technology is based on equipment currently available.

"We have a diagnostic ultrasound machine that has enhanced capability to image kidney stones in the body," said Bailey, a principal engineer at APL-UW. "We also have a capability that uses ultrasound waves coming right through the skin to push small stones or pieces of stones toward the exit of the kidney, so they will naturally pass, avoiding surgery."

Currently on Earth, the preferred removal method is for patients to drink water to encourage the stones to pass naturally, but this does not always work, and surgery is often the only option. In space, the threat from kidney stones is greater due to the difficulty of keeping astronauts fully hydrated. Another factor is that bones demineralize in the reduced-gravity environment of space, dumping salts into the blood and eventually into the urine. The elevated concentration of salts in the urine is a risk factor for stones.

Crum, who is a principal physicist at APL-UW, said kidney stones could be a serious problem on a long-duration mission. "It is possible that if a human were in a space exploration environment and could not easily return to Earth, such as a mission to an asteroid or Mars, kidney stones could be a dangerous situation," Crum said. "We want to prepare for this risk by having a readily available treatment, such as pushing the stone via ultrasound."

Before a stone can be pushed, it needs to be located. Standard ultrasound machines have a black and white imaging mode called B-mode that creates a picture of the anatomy. They also have a Doppler mode that specifically displays blood flow and the motion of the blood within tissue in color. In Doppler mode a kidney stone can appear brightly colored and twinkling. The reason for this is unknown, but Crum and Bailey are working to understand what causes the Twinkling Artifact image.

"At the same time, we have gone beyond Twinkling Artifact and utilized what we know with some other knowledge about kidney stones to create specific modes for kidney stones," Bailey said. "We present the stone in a way that looks like it is twinkling in an image in which the anatomy is black and white, with one brightly colored stone or multiple colored stones."

Once the stones are located, the ultrasound machine operator can select a stone to target, and then, with a simple push of a button, send a focused ultrasound wave, about half a millimeter in width, to move the stone toward the kidney's exit. The stone moves about one centimeter per second. In addition to being an option to surgery, the technology can be used to "clean up" after surgery.

"There are always residual fragments left behind after surgery," Bailey said. "Fifty percent of those patients will be back within five years for treatment. We can help those fragments pass."

The ultrasound technology being developed for NSBRI by Crum and Bailey is not limited to kidney stone detection and removal. The technology can also be used to stop internal bleeding and ablate (or destroy) tumors. Crum said the research group has innovative plans for the technology. "We envision a platform technology that has open architecture, is software-based and can use ultrasound for a variety of applications," he said. "Not just for diagnosis, but also for therapy."

NSBRI's research portfolio includes other projects seeking to develop smart medical systems and technologies, such as new uses for ultrasound, that provide health care to astronauts in space. Crum, who served eight years as an NSBRI Team Leader, said the innovative approaches to overcome the restrictive environment of space can make an impact on Earth.

"Space has demanded medical care technology that is versatile, low-cost and has restricted size. All of these required specifications for use in a space environment are now almost demanded by the general public," Crum said. "One of the reasons that translation from one site to another is possible is because of NSBRI's investment."

The ultrasound work by Crum and Bailey has also received support from the Defense Advance Research Projects Agency, the National Institutes of Health, and the University of Washington and foundations associated with it to promote commercialization.

NSBRI is a NASA-funded consortium of institutions studying the health risks related to long-duration spaceflight and developing the medical technologies needed for long missions. NSBRI is headquartered at Baylor College of Medicine in Houston, with its science, technology and education projects taking place at more than 60 institutions across the United States. In addition to protecting astronaut health, NSBRI research has benefits for health care on Earth. For more information about NSBRI, please visit www.nsbri.org.

Editor's Note: The release, images and video access are available at http://www.nsbri.org/newsflash/indivArticle.asp?id=454&articleID=155

Brad Thomas | EurekAlert!
Further information:
http://www.bcm.edu

More articles from Medical Engineering:

nachricht Artificial intelligence may help diagnose tuberculosis in remote areas
25.04.2017 | Radiological Society of North America

nachricht Pharmacoscpy: Next-Generation Microscopy
25.04.2017 | CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli

26.04.2017 | Agricultural and Forestry Science

SwRI-led team discovers lull in Mars' giant impact history

26.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>