Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Whole-Blood Sensor Research Could Transform Cardiac Testing

University of Ulster researchers have teamed up with scientists at the Indian Institute of Technology, Bombay on a project to develop low-volume whole-blood sensors that could transform point-of-care cardiac testing.

Fast, accurate blood analysis is vital in the treatment of people suffering heart attacks or other life-threatening cardiac events, said Professor Jim McLaughlin, Director of UU’s Nanotechnology & Advanced Materials Research Institute, who leads the project team.

“If you have a suspected heart attack medical staff will monitor your ECG, respiration rate, SP02 and eye dilation.

“But it is also vitally important that your blood is analysed as quickly as possible. Analysing cardiac enzymes in the blood will enable medical staff to determine the correct treatment. It will guide them on whether to administer clot-busting drugs, insert a stent or attempt defibrillation, for example.”

The sensor system under development will use carbon nanotubes to filter out blood cells - preventing them from adhering to the sensor, or distorting the result.

Typical uses of the technology include monitoring of cardiac enzymes, e.g. troponin I, to aid in the diagnosis of a cardiac attack, determine the severity and also monitor recovery afterwards.

The ultimate application will be important in cases where defibrillators are used; cardiac rehabilitation; bed-side monitoring; triage scenarios and at the scene of an emergency.

The UU/IIT Bombay initiative is part of the UK-India Education and Research Initiative (UKERI), a programme funded by the governments of the UK and India, for collaborative projects between educational institutes in the two countries.

The UKERI project has enabled the recruitment of four new PhD students who have already started at UU, and is expected to attract more PhD exchanges as it progresses. The first formal meeting between the researchers took place on 25-28th of September 2007 at the University of Ulster.

David Young | alfa
Further information:

More articles from Medical Engineering:

nachricht Gentle sensors for diagnosing brain disorders
29.09.2016 | King Abdullah University of Science and Technology

nachricht New imaging technique in Alzheimer’s disease - opens up possibilities for new drug development
28.09.2016 | Lund University

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>