Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Novel 3-D cell culture model shows selective tumour uptake of nanoparticles

03.09.2007
A nanoparticle drug delivery system designed for brain tumour therapy has shown promising tumour cell selectivity in a novel cell culture model devised by scientists at The University of Nottingham. The project, conducted jointly by the Schools of Pharmacy, Biomedical Sciences and Human Development, will be featured in the September issue of the Experimental Biology and Medicine.

Therapy for brain cancers is particularly difficult for a number of reasons, including getting sufficient drug to the tumour and selectivity of drug action. Dr Martin Garnett, Associate Professor of drug delivery at the School of Pharmacy said: “We are working on a number of new therapeutic approaches using nanoparticle drug delivery systems. However, understanding and developing these systems requires suitable models for their evaluation.”

The nanoparticles used in this study were prepared from a novel biodegradable polymer poly (glycerol adipate). The polymer has been further modified to enhance incorporation of drugs and make the nanoparticles more effective.

Dr Terence Parker, Associate Professor in the School of Biomedical Sciences explained: “The interaction of tumour cells with brain cells varies between different tumours and different locations within the brain. Using 3-dimensional culture models is therefore important in ensuring that the behaviour of cells in culture is similar to that seen in real life”.

The work was mainly carried out by graduate student Weina Meng who formulated the fluorescently labelled nanoparticles and studied them in a variety of tumour and brain cell cultures. Her early studies showed faster uptake of nanoparticles into tumour cell cultures than normal brain cell cultures grown separately. This selectivity was only seen in 3-dimensional cultures and was the driving force to develop a more complex and representative model.

Tumour cell aggregates have been used as cell culture models of cancer cells for many years. Similarly thin brain slices from newborn rats can be cultured for weeks and are an important tool in brain biology. In the cell co-culture model now reported, these two techniques have been brought together for the first time. Brain tumour cell aggregates were labelled with fluorescent iron microparticles and grown on normal newborn rat-brain tissue slices. The double cell labelling technique allowed investigation of tumour cell invasion into brain tissue by either fluorescence or electron microscopy from the same samples. Using these techniques the tumour aggregates were found to invade the brain slices in a similar manner to tumours in the body. Having developed the model then the tumour selective uptake of nanoparticles was demonstrated in the co-culture.

The collaboration on this project has been nurtured by Professor David Walker of the School of Human Development who co-founded the Children’s Brain Tumour Research Group at Nottingham. Professor Walker said: “Understanding the biology of tumours is important if we are to develop effective new treatments. This work demonstrates how close co-operation between disciplines can help to push forward ideas which could lead to new clinical therapies”.

Dr. Steven R. Goodman, Editor-in-Chief of Experimental Biology and Medicine, agrees with Professor Walker. Dr. Goodman stated: “The convergence of cancer cell biology and nanoscience, exemplified by this study, holds great promise for the future of brain tumour therapy.”

Emma Thorne | alfa
Further information:
http://www.nottingham.ac.uk

More articles from Medical Engineering:

nachricht Visualizing gene expression with MRI
23.12.2016 | California Institute of Technology

nachricht Illuminating cancer: Researchers invent a pH threshold sensor to improve cancer surgery
21.12.2016 | UT Southwestern Medical Center

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists spin artificial silk from whey protein

X-ray study throws light on key process for production

A Swedish-German team of researchers has cleared up a key process for the artificial production of silk. With the help of the intense X-rays from DESY's...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Breaking the optical bandwidth record of stable pulsed lasers

24.01.2017 | Physics and Astronomy

Choreographing the microRNA-target dance

24.01.2017 | Life Sciences

Spanish scientists create a 3-D bioprinter to print human skin

24.01.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>