Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Deflecting damage: Flexible electronics aid brain injury research

10.04.2007
Flexible electronic membranes may overcome a longstanding dilemma faced by brain researchers: How to replicate injuries in the lab without destroying the electrodes that monitor how brain cells respond to physical trauma.

Developed by a team of engineers at Princeton University, Columbia University and the University of Cambridge, the membranes feature microelectrodes that are able to withstand the sudden stretching that is used to simulate severe head trauma. The systems could allow far more nuanced studies of brain injury than previously possible and may lead to better treatments in the minutes and hours immediately following the injury. The work also has implications for other areas of medicine, including next-generation prosthetics, as well as myriad industry and military applications.

“This is an immediate application of the electronics of the future,” said Sigurd Wagner, a Princeton professor of electrical engineering. Wagner and former Princeton postdoctoral researcher Stephanie Lacour are part of a National Institutes of Health-funded project to develop flexible arrays of microelectrodes for brain research. Led by Barclay Morrison III, an assistant biomedical engineering professor at Columbia, members of the team will present their work at the April 9-13 conference of the Materials Research Society in San Francisco.

Existing techniques to study traumatic brain injury have been limited because it is almost impossible to insert an electrode into a cell to obtain a recording, remove the probe, injure the cell, and then reinsert the probe into the same cell, Morrison said. Because of this limitation, researchers rely on other surrogate markers of injury, such as cell death.

“In terms of traumatic brain injury, there can be a lot of functional damage to the brain in other ways than just killing a cell,” Morrison said. “Neurons can still be alive, but not properly firing,” which leads to problems ranging from comas to epilepsy.

These improperly functioning neurons can now be assessed by the electrodes in the stretchable membranes. After brain cells have been placed on the flexible surface and allowed to grow, the researchers measure their normal activity. The membrane is then suddenly stretched and returned to its original form. Having withstood the shock, the electrodes embedded in the membrane continue to monitor the cellular activity, providing a before and after picture of traumatic brain injury.

Future work will continue to refine these measurements and also attempt to obtain readings from cells during the injury events themselves, Morrison said. The flexible electrodes also can be used to provide electrical input to brain tissue and may one day be used to induce learning in brain cells damaged by trauma. This technology also has promising applications for the engineering of nervous, muscular and skeletal tissue. For instance, Morrison said, the electrodes could potentially be used to train heart tissue grown in the lab to contract appropriately when stimulated.

The new membranes build upon work done by Lacour during her time at Princeton in Wagner’s lab. Lacour now is managing research in flexible electronics for neuroscience at the University of Cambridge in England. She has been recognized by Technology Review magazine, which named her to its 2006 list of 35 leading innovators under age 35.

Together, the engineers created the first working stretchable circuits by linking tiny pieces of traditional semiconductors mounted on a rubbery membrane with thin pieces of gold. Even when stretched, the circuits maintained their ability to conduct electricity.

Research on the flexible membranes also is likely to contribute to the longstanding challenge of connecting electronic devices to the human nervous system, Wagner said. Prosthetic devices, for example, could be coated with electronic “skin” that senses touch and temperature and sends that information back to the brain like any natural human limb.

“A basic problem with the interface between electronics and living tissue is that electronics are hard and tissues are soft,” he said, noting that nerve cells quickly become irritated when in contact with the hard electrodes of today. The hope is that the devices of the future will flex with living tissue, maintaining a connection without damaging the human cells.

Hilary Parker | EurekAlert!
Further information:
http://www.princeton.edu

More articles from Medical Engineering:

nachricht Artificial intelligence may help diagnose tuberculosis in remote areas
25.04.2017 | Radiological Society of North America

nachricht Pharmacoscpy: Next-Generation Microscopy
25.04.2017 | CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>