Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Light-based probe 'sees' early cancers in first tests on human tissue

In its first laboratory tests on human tissue, a light-based probe built by researchers at Duke University's Pratt School of Engineering almost instantly detected the earliest signs of cancer in cells that line internal organs.

If the preliminary success of the "optical biopsy" is confirmed through clinical trials, such a device could ultimately provide a particular advantage for early diagnosis, treatment and prevention of many types of cancer, according to the researchers. The vast majority of cancers start in the body's epithelial cells, which line the mucous membranes in the lungs, esophagus and gut.

"About 85 percent of all cancers start in the epithelium. It may be, for example, brain cancer that causes a patient's death, but that cancer might have originated in the colon or other site of epithelial tissue," said Adam Wax, professor of biomedical engineering. "Being able to detect pre-cancer in epithelial tissues would therefore help prevent all types of cancer by catching it early, before it has a chance to develop further or spread."

In some instances, the technique, known as "fa/LCI" (frequency-domain angle-resolved low coherence interferometry), might ultimately enable doctors and their patients to avoid removal of tissue for biopsy, Wax said. In other instances, he added, fa/LCI could help physicians pinpoint suspicious cells during a traditional biopsy procedure, making it less likely for a cancerous lesion to escape detection.

Wax and his former graduate student John Pyhtila reported in the March 2007 issue of Gastrointestinal Endoscopy that their fiber-optic device reliably differentiated between healthy and precancerous digestive tissue taken from the stomach and esophagus of three patients known to have a precancerous form of a condition called Barrett's esophagus. In less than a second, their fa/LCI-enhanced version of an endoscope, instruments used to visualize internal organs, provided the clinical information required for diagnosis.

The work was supported by the National Cancer Institute and the National Science Foundation.

"Our initial study is very promising," Wax said of the findings. "We looked at tissue removed from just a handful of patients and were able to get 100 percent sensitivity. We could detect pre-cancer in the esophagus and distinguish it from normal tissue like you would find in the stomach."

The fa/LCI device detects irregularities in the nucleus, or central component, of cells, through changes in the way laser light scatters. "The size and shape of cell nuclei are powerful indicators of this precancerous condition called dysplasia, which literally means 'bad growth'," Wax said. "Typically, nuclei are a fairly consistent size. However, when you go down the road toward cancer, you get irregular and enlarged cell nuclei.

"Our device lets us measure those changes with much better accuracy than any imaging technique," Wax said.

His team plans to begin a small clinical trial of the advanced endoscope in collaboration with researchers at Duke University Medical Center. The team also is conducting animal studies to test the feasibility of incorporating fa/LCI into instruments for examining the colon, lung and other organs. Based on a study in hamsters, Wax and Duke postdoctoral researcher Kevin Chalut reported in the February 2007 issue of Cancer Epidemiology Biomarkers & Prevention that the technique might also be used in the identification of early lung cancer.

Wax said he and his colleagues have launched a company, called Oncoscope, to pursue the commercial development of fa/LCI devices. If all goes well, a new and improved endoscope might be ready for the clinic in three to five years, he said.

Kendall Morgan | EurekAlert!
Further information:

More articles from Medical Engineering:

nachricht Gentle sensors for diagnosing brain disorders
29.09.2016 | King Abdullah University of Science and Technology

nachricht New imaging technique in Alzheimer’s disease - opens up possibilities for new drug development
28.09.2016 | Lund University

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>