Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Light-based probe 'sees' early cancers in first tests on human tissue

28.03.2007
In its first laboratory tests on human tissue, a light-based probe built by researchers at Duke University's Pratt School of Engineering almost instantly detected the earliest signs of cancer in cells that line internal organs.

If the preliminary success of the "optical biopsy" is confirmed through clinical trials, such a device could ultimately provide a particular advantage for early diagnosis, treatment and prevention of many types of cancer, according to the researchers. The vast majority of cancers start in the body's epithelial cells, which line the mucous membranes in the lungs, esophagus and gut.

"About 85 percent of all cancers start in the epithelium. It may be, for example, brain cancer that causes a patient's death, but that cancer might have originated in the colon or other site of epithelial tissue," said Adam Wax, professor of biomedical engineering. "Being able to detect pre-cancer in epithelial tissues would therefore help prevent all types of cancer by catching it early, before it has a chance to develop further or spread."

In some instances, the technique, known as "fa/LCI" (frequency-domain angle-resolved low coherence interferometry), might ultimately enable doctors and their patients to avoid removal of tissue for biopsy, Wax said. In other instances, he added, fa/LCI could help physicians pinpoint suspicious cells during a traditional biopsy procedure, making it less likely for a cancerous lesion to escape detection.

Wax and his former graduate student John Pyhtila reported in the March 2007 issue of Gastrointestinal Endoscopy that their fiber-optic device reliably differentiated between healthy and precancerous digestive tissue taken from the stomach and esophagus of three patients known to have a precancerous form of a condition called Barrett's esophagus. In less than a second, their fa/LCI-enhanced version of an endoscope, instruments used to visualize internal organs, provided the clinical information required for diagnosis.

The work was supported by the National Cancer Institute and the National Science Foundation.

"Our initial study is very promising," Wax said of the findings. "We looked at tissue removed from just a handful of patients and were able to get 100 percent sensitivity. We could detect pre-cancer in the esophagus and distinguish it from normal tissue like you would find in the stomach."

The fa/LCI device detects irregularities in the nucleus, or central component, of cells, through changes in the way laser light scatters. "The size and shape of cell nuclei are powerful indicators of this precancerous condition called dysplasia, which literally means 'bad growth'," Wax said. "Typically, nuclei are a fairly consistent size. However, when you go down the road toward cancer, you get irregular and enlarged cell nuclei.

"Our device lets us measure those changes with much better accuracy than any imaging technique," Wax said.

His team plans to begin a small clinical trial of the advanced endoscope in collaboration with researchers at Duke University Medical Center. The team also is conducting animal studies to test the feasibility of incorporating fa/LCI into instruments for examining the colon, lung and other organs. Based on a study in hamsters, Wax and Duke postdoctoral researcher Kevin Chalut reported in the February 2007 issue of Cancer Epidemiology Biomarkers & Prevention that the technique might also be used in the identification of early lung cancer.

Wax said he and his colleagues have launched a company, called Oncoscope, to pursue the commercial development of fa/LCI devices. If all goes well, a new and improved endoscope might be ready for the clinic in three to five years, he said.

Kendall Morgan | EurekAlert!
Further information:
http://www.duke.edu

More articles from Medical Engineering:

nachricht XXL computed tomography: a new dimension in X-ray analysis
17.05.2018 | Fraunhofer-Gesellschaft

nachricht Why we need erasable MRI scans
26.04.2018 | California Institute of Technology

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Research reveals how order first appears in liquid crystals

23.05.2018 | Life Sciences

Space-like gravity weakens biochemical signals in muscle formation

23.05.2018 | Life Sciences

NIST puts the optical microscope under the microscope to achieve atomic accuracy

23.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>