Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Light-based probe 'sees' early cancers in first tests on human tissue

28.03.2007
In its first laboratory tests on human tissue, a light-based probe built by researchers at Duke University's Pratt School of Engineering almost instantly detected the earliest signs of cancer in cells that line internal organs.

If the preliminary success of the "optical biopsy" is confirmed through clinical trials, such a device could ultimately provide a particular advantage for early diagnosis, treatment and prevention of many types of cancer, according to the researchers. The vast majority of cancers start in the body's epithelial cells, which line the mucous membranes in the lungs, esophagus and gut.

"About 85 percent of all cancers start in the epithelium. It may be, for example, brain cancer that causes a patient's death, but that cancer might have originated in the colon or other site of epithelial tissue," said Adam Wax, professor of biomedical engineering. "Being able to detect pre-cancer in epithelial tissues would therefore help prevent all types of cancer by catching it early, before it has a chance to develop further or spread."

In some instances, the technique, known as "fa/LCI" (frequency-domain angle-resolved low coherence interferometry), might ultimately enable doctors and their patients to avoid removal of tissue for biopsy, Wax said. In other instances, he added, fa/LCI could help physicians pinpoint suspicious cells during a traditional biopsy procedure, making it less likely for a cancerous lesion to escape detection.

Wax and his former graduate student John Pyhtila reported in the March 2007 issue of Gastrointestinal Endoscopy that their fiber-optic device reliably differentiated between healthy and precancerous digestive tissue taken from the stomach and esophagus of three patients known to have a precancerous form of a condition called Barrett's esophagus. In less than a second, their fa/LCI-enhanced version of an endoscope, instruments used to visualize internal organs, provided the clinical information required for diagnosis.

The work was supported by the National Cancer Institute and the National Science Foundation.

"Our initial study is very promising," Wax said of the findings. "We looked at tissue removed from just a handful of patients and were able to get 100 percent sensitivity. We could detect pre-cancer in the esophagus and distinguish it from normal tissue like you would find in the stomach."

The fa/LCI device detects irregularities in the nucleus, or central component, of cells, through changes in the way laser light scatters. "The size and shape of cell nuclei are powerful indicators of this precancerous condition called dysplasia, which literally means 'bad growth'," Wax said. "Typically, nuclei are a fairly consistent size. However, when you go down the road toward cancer, you get irregular and enlarged cell nuclei.

"Our device lets us measure those changes with much better accuracy than any imaging technique," Wax said.

His team plans to begin a small clinical trial of the advanced endoscope in collaboration with researchers at Duke University Medical Center. The team also is conducting animal studies to test the feasibility of incorporating fa/LCI into instruments for examining the colon, lung and other organs. Based on a study in hamsters, Wax and Duke postdoctoral researcher Kevin Chalut reported in the February 2007 issue of Cancer Epidemiology Biomarkers & Prevention that the technique might also be used in the identification of early lung cancer.

Wax said he and his colleagues have launched a company, called Oncoscope, to pursue the commercial development of fa/LCI devices. If all goes well, a new and improved endoscope might be ready for the clinic in three to five years, he said.

Kendall Morgan | EurekAlert!
Further information:
http://www.duke.edu

More articles from Medical Engineering:

nachricht Visualizing gene expression with MRI
23.12.2016 | California Institute of Technology

nachricht Illuminating cancer: Researchers invent a pH threshold sensor to improve cancer surgery
21.12.2016 | UT Southwestern Medical Center

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>