Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Microscopic brain damage detected in early Alzheimer's disease

27.09.2006
Researchers have developed a new computer-aided analysis technique to identify early cellular damage in Alzheimer's disease (AD). The study is featured in the October issue of Radiology.

"With increasing longevity among the population, the incidence of AD is expected to rise rapidly, creating a great burden not only for patients and their families, but also for society," said Min-Ying Su, Ph.D., author and associate professor in the Department of Radiological Sciences & the Tu and Yuen Center for Functional Onco-Imaging at the University of California at Irvine. "Our methods may enable earlier diagnosis of AD, allowing earlier intervention to slow down disease progression," she added.

As AD progresses, cell membranes in the brain may be damaged, allowing water molecules to move throughout the brain more freely. This phenomenon can disrupt neural processes and cause neuron cells to die, leading to brain atrophy. This process of cellular damage causes an increase in the "apparent diffusion coefficient," or ADC, which is a measurement used to study the distribution of water in the brain.

Thirteen elderly patients with mild cognitive impairment (MCI) were enrolled in Dr. Su's study. Patients with MCI are at high risk for developing AD. These 13 patients and 13 elderly control subjects underwent magnetic resonance imaging (MRI) of the brain and performed recall tasks. On MRI images, ADC values were measured in gray- and white-matter regions by using the computer-aided analysis program. Findings were compared between patients and healthy controls.

The computerized mapping technique allowed researchers to evaluate ADC values in large regions of the brain. In patients with MCI, researchers identified regions of brain atrophy and increased water content in white-matter areas. Additionally, high ADC values were found in the hippocampus, temporal lobe gray matter and the corpus callosum, which connects the two cerebral hemispheres. The ADC values in the hippocampus were significantly correlated with worse memory performance scores.

"The results have supported our objective to develop a computer-based analysis technique that can analyze different regions in the entire brain, to provide a comprehensive evaluation of cellular changes," Dr. Su said.

Until now, ADC values from gray matter in various lobes of the brain have not been reported, due to the difficulty of obtaining measurements in these regions. This new technology may allow researchers to learn more about how AD develops in the brain and to cultivate better treatment strategies for patients based on their individual cognitive needs.

"Patients with MCI who are very likely to progress to AD may start early treatment interventions, while patients who may remain stable with MCI can be spared from treatment and the associated side effects," added Dr. Su. "The diagnostic accuracy in identifying AD needs to be greatly improved."

AD is the most common form of dementia, affecting more than 4.5 million Americans. Patients diagnosed with AD have an average life expectancy of eight years after initial symptoms appear.

Heather Babiar | EurekAlert!
Further information:
http://www.rsna.org

More articles from Medical Engineering:

nachricht Medical gamma-ray camera is now palm-sized
23.05.2017 | Waseda University

nachricht Computer accurately identifies and delineates breast cancers on digital tissue slides
11.05.2017 | Case Western Reserve University

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>