Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Microscopic brain damage detected in early Alzheimer's disease

27.09.2006
Researchers have developed a new computer-aided analysis technique to identify early cellular damage in Alzheimer's disease (AD). The study is featured in the October issue of Radiology.

"With increasing longevity among the population, the incidence of AD is expected to rise rapidly, creating a great burden not only for patients and their families, but also for society," said Min-Ying Su, Ph.D., author and associate professor in the Department of Radiological Sciences & the Tu and Yuen Center for Functional Onco-Imaging at the University of California at Irvine. "Our methods may enable earlier diagnosis of AD, allowing earlier intervention to slow down disease progression," she added.

As AD progresses, cell membranes in the brain may be damaged, allowing water molecules to move throughout the brain more freely. This phenomenon can disrupt neural processes and cause neuron cells to die, leading to brain atrophy. This process of cellular damage causes an increase in the "apparent diffusion coefficient," or ADC, which is a measurement used to study the distribution of water in the brain.

Thirteen elderly patients with mild cognitive impairment (MCI) were enrolled in Dr. Su's study. Patients with MCI are at high risk for developing AD. These 13 patients and 13 elderly control subjects underwent magnetic resonance imaging (MRI) of the brain and performed recall tasks. On MRI images, ADC values were measured in gray- and white-matter regions by using the computer-aided analysis program. Findings were compared between patients and healthy controls.

The computerized mapping technique allowed researchers to evaluate ADC values in large regions of the brain. In patients with MCI, researchers identified regions of brain atrophy and increased water content in white-matter areas. Additionally, high ADC values were found in the hippocampus, temporal lobe gray matter and the corpus callosum, which connects the two cerebral hemispheres. The ADC values in the hippocampus were significantly correlated with worse memory performance scores.

"The results have supported our objective to develop a computer-based analysis technique that can analyze different regions in the entire brain, to provide a comprehensive evaluation of cellular changes," Dr. Su said.

Until now, ADC values from gray matter in various lobes of the brain have not been reported, due to the difficulty of obtaining measurements in these regions. This new technology may allow researchers to learn more about how AD develops in the brain and to cultivate better treatment strategies for patients based on their individual cognitive needs.

"Patients with MCI who are very likely to progress to AD may start early treatment interventions, while patients who may remain stable with MCI can be spared from treatment and the associated side effects," added Dr. Su. "The diagnostic accuracy in identifying AD needs to be greatly improved."

AD is the most common form of dementia, affecting more than 4.5 million Americans. Patients diagnosed with AD have an average life expectancy of eight years after initial symptoms appear.

Heather Babiar | EurekAlert!
Further information:
http://www.rsna.org

More articles from Medical Engineering:

nachricht New imaging technique able to watch molecular dynamics of neurodegenerative diseases
14.07.2017 | The Optical Society

nachricht Quick test finds signs of sepsis in a single drop of blood
03.07.2017 | University of Illinois at Urbana-Champaign

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

CCNY physicists master unexplored electron property

26.07.2017 | Physics and Astronomy

Molecular microscopy illuminates molecular motor motion

26.07.2017 | Life Sciences

Large-Mouthed Fish Was Top Predator After Mass Extinction

26.07.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>