Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The world’s first vertical nanobeam to enable cancer care to be individualised for the patient

12.06.2006
The University of Surrey Ion Beam Centre (IBC) in collaboration with the Gray Cancer Institute is working on a £1.2M project which is underpinned by a prestigious grant of £800k from the Wolfson Foundation. The funding will be used to build the world’s first vertical scanning focussed nanobeam which will be used to analyse how radiation affects living cells. Radiation therapy is second only to surgery as a cure for cancer in the UK and so this research has a large potential impact on patient survival and quality of life. The new beam line will also be used to look at the processes which may lead to cancer and the risks associated with low level exposure to radiation (e.g. in structures built on or out of granite).

The new nanobeam at the IBC will be able to provide data about the radiation sensitivity of tumours. Some tumours are known to be normally radiation resistant, but display hyper-sensitivity to very low doses. This means that a very small dose of radiation can have a much larger than expected effect in terms of destroying the tumour. To help clinicians test these theories, data from the IBC will be used to the construct virtual tumours. These virtual tumours can then be used to test the efficacy of different treatment strategies.

The Ion Beam Centre already houses one of the World’s largest and most advanced facilities. In the new nanobeam, the ions will be shot into the target at about one tenth the speed of light (70,000,000 mph). In addition to helping understand the way in which radiation affects living cells, these ions can also be used to map the elemental structure of the sample in three dimensions. This is done by analysing the radiation they give off as they pass through the sample and the way in which some of them bounce back while others pass through. By carrying out all these types of analyses simultaneously a three dimensional elemental picture of the sample is constructed. Until now the IBC has been unable to analyse liquids. This is because of gravity which means that liquid samples have to be held perfectly horizontal while the analysis takes place. With a vertical beam it is therefore possible to directly analyse liquids. As human cells and indeed the entire human body is ~70% water, this means that the IBC will be able to analyse cells and see, for instance, the interaction between chemotherapeutic drugs and radiation.

Research on non liquid samples using the IBC’s horizontal beam lines has already answered questions such as: what is the composition of paints in 16th century paintings? What is in the particulate matter that comes out of volcanoes? What are the metal atoms in proteins and how many are there? How do parasitic wasps lay their eggs? And what makes 1920’s German bank notes toxic?

The new vertical nanobeam will also have many other applications including chemistry at the atomic scale, the creation of novel materials and nanostructures and other, as yet unknown procedures.

Stuart Miller | alfa
Further information:
http://www.surrey.ac.uk

More articles from Medical Engineering:

nachricht 'Neuron-reading' nanowires could accelerate development of drugs for neurological diseases
12.04.2017 | University of California - San Diego

nachricht PET radiotracer design for monitoring targeted immunotherapy
10.04.2017 | Society of Nuclear Medicine

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>