Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The world’s first vertical nanobeam to enable cancer care to be individualised for the patient

12.06.2006
The University of Surrey Ion Beam Centre (IBC) in collaboration with the Gray Cancer Institute is working on a £1.2M project which is underpinned by a prestigious grant of £800k from the Wolfson Foundation. The funding will be used to build the world’s first vertical scanning focussed nanobeam which will be used to analyse how radiation affects living cells. Radiation therapy is second only to surgery as a cure for cancer in the UK and so this research has a large potential impact on patient survival and quality of life. The new beam line will also be used to look at the processes which may lead to cancer and the risks associated with low level exposure to radiation (e.g. in structures built on or out of granite).

The new nanobeam at the IBC will be able to provide data about the radiation sensitivity of tumours. Some tumours are known to be normally radiation resistant, but display hyper-sensitivity to very low doses. This means that a very small dose of radiation can have a much larger than expected effect in terms of destroying the tumour. To help clinicians test these theories, data from the IBC will be used to the construct virtual tumours. These virtual tumours can then be used to test the efficacy of different treatment strategies.

The Ion Beam Centre already houses one of the World’s largest and most advanced facilities. In the new nanobeam, the ions will be shot into the target at about one tenth the speed of light (70,000,000 mph). In addition to helping understand the way in which radiation affects living cells, these ions can also be used to map the elemental structure of the sample in three dimensions. This is done by analysing the radiation they give off as they pass through the sample and the way in which some of them bounce back while others pass through. By carrying out all these types of analyses simultaneously a three dimensional elemental picture of the sample is constructed. Until now the IBC has been unable to analyse liquids. This is because of gravity which means that liquid samples have to be held perfectly horizontal while the analysis takes place. With a vertical beam it is therefore possible to directly analyse liquids. As human cells and indeed the entire human body is ~70% water, this means that the IBC will be able to analyse cells and see, for instance, the interaction between chemotherapeutic drugs and radiation.

Research on non liquid samples using the IBC’s horizontal beam lines has already answered questions such as: what is the composition of paints in 16th century paintings? What is in the particulate matter that comes out of volcanoes? What are the metal atoms in proteins and how many are there? How do parasitic wasps lay their eggs? And what makes 1920’s German bank notes toxic?

The new vertical nanobeam will also have many other applications including chemistry at the atomic scale, the creation of novel materials and nanostructures and other, as yet unknown procedures.

Stuart Miller | alfa
Further information:
http://www.surrey.ac.uk

More articles from Medical Engineering:

nachricht Virtual Reality in Medicine: New Opportunities for Diagnostics and Surgical Planning
07.12.2016 | Universität Basel

nachricht 3-D printed kidney phantoms aid nuclear medicine dosing calibration
06.12.2016 | Society of Nuclear Medicine

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>