Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The world’s first vertical nanobeam to enable cancer care to be individualised for the patient

12.06.2006
The University of Surrey Ion Beam Centre (IBC) in collaboration with the Gray Cancer Institute is working on a £1.2M project which is underpinned by a prestigious grant of £800k from the Wolfson Foundation. The funding will be used to build the world’s first vertical scanning focussed nanobeam which will be used to analyse how radiation affects living cells. Radiation therapy is second only to surgery as a cure for cancer in the UK and so this research has a large potential impact on patient survival and quality of life. The new beam line will also be used to look at the processes which may lead to cancer and the risks associated with low level exposure to radiation (e.g. in structures built on or out of granite).

The new nanobeam at the IBC will be able to provide data about the radiation sensitivity of tumours. Some tumours are known to be normally radiation resistant, but display hyper-sensitivity to very low doses. This means that a very small dose of radiation can have a much larger than expected effect in terms of destroying the tumour. To help clinicians test these theories, data from the IBC will be used to the construct virtual tumours. These virtual tumours can then be used to test the efficacy of different treatment strategies.

The Ion Beam Centre already houses one of the World’s largest and most advanced facilities. In the new nanobeam, the ions will be shot into the target at about one tenth the speed of light (70,000,000 mph). In addition to helping understand the way in which radiation affects living cells, these ions can also be used to map the elemental structure of the sample in three dimensions. This is done by analysing the radiation they give off as they pass through the sample and the way in which some of them bounce back while others pass through. By carrying out all these types of analyses simultaneously a three dimensional elemental picture of the sample is constructed. Until now the IBC has been unable to analyse liquids. This is because of gravity which means that liquid samples have to be held perfectly horizontal while the analysis takes place. With a vertical beam it is therefore possible to directly analyse liquids. As human cells and indeed the entire human body is ~70% water, this means that the IBC will be able to analyse cells and see, for instance, the interaction between chemotherapeutic drugs and radiation.

Research on non liquid samples using the IBC’s horizontal beam lines has already answered questions such as: what is the composition of paints in 16th century paintings? What is in the particulate matter that comes out of volcanoes? What are the metal atoms in proteins and how many are there? How do parasitic wasps lay their eggs? And what makes 1920’s German bank notes toxic?

The new vertical nanobeam will also have many other applications including chemistry at the atomic scale, the creation of novel materials and nanostructures and other, as yet unknown procedures.

Stuart Miller | alfa
Further information:
http://www.surrey.ac.uk

More articles from Medical Engineering:

nachricht True to type: From human biopsy to complex gut physiology on a chip
14.02.2018 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht The Scanpy software processes huge amounts of single-cell data
12.02.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Contacting the molecular world through graphene nanoribbons

19.02.2018 | Materials Sciences

When Proteins Shake Hands

19.02.2018 | Materials Sciences

Cells communicate in a dynamic code

19.02.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>