Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New sensor to provide early warning of oxygen loss to unborn children

15.02.2006

Researchers at the University of Warwick, and the University Hospitals Coventry and Warwickshire NHS Trust, have devised a new sensor which dramatically improves the amount of early warning doctors and midwives get of a dangerous situation in the birth process when the unborn child’s brain is starved of oxygen - Fetal Hypoxia.

The threat of fetal hypoxia carries dangers not only for the child but also for the woman giving birth as doctors often proceed quickly to a caesarean section if they feel there is a significant threat of fetal hypoxia. However current tests for this condition require blood samples to be taken to a lab for examination leading to delays which means doctors having to decide sometimes to proceed with a cesarean section rather than take the risk on waiting on that full analysis.

University of Warwick researcher Professor Nick Dale had been looking at the science surrounding a chemical that can be found in blood called hypoxanthine. An unborn child with more than 5 micromoles (5 millionths of a mole) of hypoxanthine per litre of their blood is at severe risk of fetal hypoxia. Professor Dale was frustrated at the lack of effective instrumentation available to detect and study this chemical and devised his own fine tuned probe to examine the chemical. On talking with colleagues in the University of Warwick’s Medical School and University Hospitals Coventry and Warwickshire NHS Trust they pointed out that the probes would be of massive benefit to doctors in the delivery room.

Warwick Medical School researchers have examined the probes and say that the use of Professor Dale’s probes to test for hypoxanthine would give doctors in delivery rooms almost instant data on whether the unborn child faced fetal hypoxia. This would allow doctors to take more informed decisions as to whether to proceed to a caesarean section and probably therefore reduce the number of caesareans conducted. Another advantage is that Professor Dale’s test also requires much less fine tuning than current tests (the blood PH test currently used to detect fetal hypoxia problems needs to identify a shift of as little of 0.05 PH).

Professor Dale is thrilled by the medical interest in his probes and is now working through a spin-out company Sarissa Biomedical Ltd - to take the work further. Sarissa is already talking with a number of medical instrument manufacturers and aims to establish a partnership between Sarissa, a medical instrument manufacturer and venture capitalists to produce a full blown medical instrument using the new probes and then to take it to full clinical trials in hospital delivery rooms.

Richard Fern | alfa
Further information:
http://www2.warwick.ac.uk/newsandevents/pressreleases/NE1000000149617/

More articles from Medical Engineering:

nachricht Visualizing gene expression with MRI
23.12.2016 | California Institute of Technology

nachricht Illuminating cancer: Researchers invent a pH threshold sensor to improve cancer surgery
21.12.2016 | UT Southwestern Medical Center

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>