Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New sensor to provide early warning of oxygen loss to unborn children

15.02.2006

Researchers at the University of Warwick, and the University Hospitals Coventry and Warwickshire NHS Trust, have devised a new sensor which dramatically improves the amount of early warning doctors and midwives get of a dangerous situation in the birth process when the unborn child’s brain is starved of oxygen - Fetal Hypoxia.

The threat of fetal hypoxia carries dangers not only for the child but also for the woman giving birth as doctors often proceed quickly to a caesarean section if they feel there is a significant threat of fetal hypoxia. However current tests for this condition require blood samples to be taken to a lab for examination leading to delays which means doctors having to decide sometimes to proceed with a cesarean section rather than take the risk on waiting on that full analysis.

University of Warwick researcher Professor Nick Dale had been looking at the science surrounding a chemical that can be found in blood called hypoxanthine. An unborn child with more than 5 micromoles (5 millionths of a mole) of hypoxanthine per litre of their blood is at severe risk of fetal hypoxia. Professor Dale was frustrated at the lack of effective instrumentation available to detect and study this chemical and devised his own fine tuned probe to examine the chemical. On talking with colleagues in the University of Warwick’s Medical School and University Hospitals Coventry and Warwickshire NHS Trust they pointed out that the probes would be of massive benefit to doctors in the delivery room.

Warwick Medical School researchers have examined the probes and say that the use of Professor Dale’s probes to test for hypoxanthine would give doctors in delivery rooms almost instant data on whether the unborn child faced fetal hypoxia. This would allow doctors to take more informed decisions as to whether to proceed to a caesarean section and probably therefore reduce the number of caesareans conducted. Another advantage is that Professor Dale’s test also requires much less fine tuning than current tests (the blood PH test currently used to detect fetal hypoxia problems needs to identify a shift of as little of 0.05 PH).

Professor Dale is thrilled by the medical interest in his probes and is now working through a spin-out company Sarissa Biomedical Ltd - to take the work further. Sarissa is already talking with a number of medical instrument manufacturers and aims to establish a partnership between Sarissa, a medical instrument manufacturer and venture capitalists to produce a full blown medical instrument using the new probes and then to take it to full clinical trials in hospital delivery rooms.

Richard Fern | alfa
Further information:
http://www2.warwick.ac.uk/newsandevents/pressreleases/NE1000000149617/

More articles from Medical Engineering:

nachricht New imaging technique able to watch molecular dynamics of neurodegenerative diseases
14.07.2017 | The Optical Society

nachricht Quick test finds signs of sepsis in a single drop of blood
03.07.2017 | University of Illinois at Urbana-Champaign

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>