Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New sensor to provide early warning of oxygen loss to unborn children

15.02.2006

Researchers at the University of Warwick, and the University Hospitals Coventry and Warwickshire NHS Trust, have devised a new sensor which dramatically improves the amount of early warning doctors and midwives get of a dangerous situation in the birth process when the unborn child’s brain is starved of oxygen - Fetal Hypoxia.

The threat of fetal hypoxia carries dangers not only for the child but also for the woman giving birth as doctors often proceed quickly to a caesarean section if they feel there is a significant threat of fetal hypoxia. However current tests for this condition require blood samples to be taken to a lab for examination leading to delays which means doctors having to decide sometimes to proceed with a cesarean section rather than take the risk on waiting on that full analysis.

University of Warwick researcher Professor Nick Dale had been looking at the science surrounding a chemical that can be found in blood called hypoxanthine. An unborn child with more than 5 micromoles (5 millionths of a mole) of hypoxanthine per litre of their blood is at severe risk of fetal hypoxia. Professor Dale was frustrated at the lack of effective instrumentation available to detect and study this chemical and devised his own fine tuned probe to examine the chemical. On talking with colleagues in the University of Warwick’s Medical School and University Hospitals Coventry and Warwickshire NHS Trust they pointed out that the probes would be of massive benefit to doctors in the delivery room.

Warwick Medical School researchers have examined the probes and say that the use of Professor Dale’s probes to test for hypoxanthine would give doctors in delivery rooms almost instant data on whether the unborn child faced fetal hypoxia. This would allow doctors to take more informed decisions as to whether to proceed to a caesarean section and probably therefore reduce the number of caesareans conducted. Another advantage is that Professor Dale’s test also requires much less fine tuning than current tests (the blood PH test currently used to detect fetal hypoxia problems needs to identify a shift of as little of 0.05 PH).

Professor Dale is thrilled by the medical interest in his probes and is now working through a spin-out company Sarissa Biomedical Ltd - to take the work further. Sarissa is already talking with a number of medical instrument manufacturers and aims to establish a partnership between Sarissa, a medical instrument manufacturer and venture capitalists to produce a full blown medical instrument using the new probes and then to take it to full clinical trials in hospital delivery rooms.

Richard Fern | alfa
Further information:
http://www2.warwick.ac.uk/newsandevents/pressreleases/NE1000000149617/

More articles from Medical Engineering:

nachricht Novel breast tomosynthesis technique reduces screening recall rate
21.02.2017 | Radiological Society of North America

nachricht Biocompatible 3-D tracking system has potential to improve robot-assisted surgery
17.02.2017 | Children's National Health System

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>