Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New sensor to provide early warning of oxygen loss to unborn children

15.02.2006

Researchers at the University of Warwick, and the University Hospitals Coventry and Warwickshire NHS Trust, have devised a new sensor which dramatically improves the amount of early warning doctors and midwives get of a dangerous situation in the birth process when the unborn child’s brain is starved of oxygen - Fetal Hypoxia.

The threat of fetal hypoxia carries dangers not only for the child but also for the woman giving birth as doctors often proceed quickly to a caesarean section if they feel there is a significant threat of fetal hypoxia. However current tests for this condition require blood samples to be taken to a lab for examination leading to delays which means doctors having to decide sometimes to proceed with a cesarean section rather than take the risk on waiting on that full analysis.

University of Warwick researcher Professor Nick Dale had been looking at the science surrounding a chemical that can be found in blood called hypoxanthine. An unborn child with more than 5 micromoles (5 millionths of a mole) of hypoxanthine per litre of their blood is at severe risk of fetal hypoxia. Professor Dale was frustrated at the lack of effective instrumentation available to detect and study this chemical and devised his own fine tuned probe to examine the chemical. On talking with colleagues in the University of Warwick’s Medical School and University Hospitals Coventry and Warwickshire NHS Trust they pointed out that the probes would be of massive benefit to doctors in the delivery room.

Warwick Medical School researchers have examined the probes and say that the use of Professor Dale’s probes to test for hypoxanthine would give doctors in delivery rooms almost instant data on whether the unborn child faced fetal hypoxia. This would allow doctors to take more informed decisions as to whether to proceed to a caesarean section and probably therefore reduce the number of caesareans conducted. Another advantage is that Professor Dale’s test also requires much less fine tuning than current tests (the blood PH test currently used to detect fetal hypoxia problems needs to identify a shift of as little of 0.05 PH).

Professor Dale is thrilled by the medical interest in his probes and is now working through a spin-out company Sarissa Biomedical Ltd - to take the work further. Sarissa is already talking with a number of medical instrument manufacturers and aims to establish a partnership between Sarissa, a medical instrument manufacturer and venture capitalists to produce a full blown medical instrument using the new probes and then to take it to full clinical trials in hospital delivery rooms.

Richard Fern | alfa
Further information:
http://www2.warwick.ac.uk/newsandevents/pressreleases/NE1000000149617/

More articles from Medical Engineering:

nachricht Medical gamma-ray camera is now palm-sized
23.05.2017 | Waseda University

nachricht Computer accurately identifies and delineates breast cancers on digital tissue slides
11.05.2017 | Case Western Reserve University

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>