Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Penn researchers discover the powerful tool of simultaneous fMRI and PET imaging


By comparing these two functional images, physicians may be able to better diagnose and treat patients with brain disorders

Philadelphia, PA) - Clinical researchers from the University of Pennsylvania Health System (UPHS) are the first to combine fMRI and PET scanning in radiology, creating a way to compare different measurements of the brain’s function concurrently. This analysis could lead to better diagnosis and treatment in patients suffering from brain disorders, like Alzheimer’s disease.

"By using these two established methods, we now have an integrated way to look at the brain’s functions," explained Andrew Newberg, MD, a radiologist in nuclear medicine at UPHS and lead author on this clinical study. "We can now get a more comprehensive view of what’s happening in the brain at a particular time, than we’ve ever been able to do before. We can look at more diseases and more activation states."

The work combines the functional imaging of fMRI (functional magnetic resonance imaging), which captures the blood flow in the brain, and PET scanning (positron emission tomography), which looks at the glucose metabolism in the brain. "Normally, these two measures are coupled, or paired together. The more metabolism you have, the more blood flow," adds Newberg. "But there are times the two don’t match up with each other like with stroke, seizure disorders, or neurodegenerative disorders. That’s what led us to this new technique so that we can explore many different aspects of the brain’s function."

So how does this new simultaneous imaging approach actually work? Radiologists inject a patient with radioactive material used for a PET scan WHILE the patient is already inside an fMRI scanner. During the time that material is being taken up in the brain, radiologists are acquiring the fMRI image. Then, when that is complete, radiologists take the patient immediately to the PET scanner, to retrieve the PET image.

"We have both machines available to us and have now put them together in a way that works," adds Newberg. "We can take the results of the simultaneous fMRI and PET scans and come up with two separate results and compare them for a new look at the brain. Using this technique, you capture the exact same moment in the brain with both scans. It will help to show us what the relationship is between metabolism and blood flow. Do those two really match up in large majority of conditions?"

Newberg said one goal of this new simultaneous fMRI-PET scan is to better understand the effect of certain medications on the brain and body. The clinical research for this study has been conducted through the PET Center at the Hospital of the University of Pennsylvania and through the Center for Functional Neuroimaging (CFN), known for its excellence in multi-disciplinary brain imaging.

Susanne Hartman | EurekAlert!
Further information:

More articles from Medical Engineering:

nachricht Gentle sensors for diagnosing brain disorders
29.09.2016 | King Abdullah University of Science and Technology

nachricht New imaging technique in Alzheimer’s disease - opens up possibilities for new drug development
28.09.2016 | Lund University

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>