Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers coat titanium with polymer to improve integration of joint replacements

03.07.2008
Research at the Georgia Institute of Technology shows that coating a titanium implant with a new biologically inspired material enhances tissue healing, improves bone growth around the implant and strengthens the attachment and integration of the implant to the bone.

"We designed a coating that specifically communicates with cells and we're telling the cells to grow bone around the implant," said Andrés García, professor and Woodruff Faculty Fellow in Georgia Tech's Woodruff School of Mechanical Engineering and the Petit Institute for Bioengineering and Bioscience.

Details of the new coating appear in the July issue of the journal Biomaterials. The research was supported by the National Institutes of Health, the Arthritis Foundation and the Georgia Tech/Emory National Science Foundation Engineering Research Center on the Engineering of Living Tissues.

Total knee and hip replacements typically last about 15 years until the components wear down or loosen. For many younger patients, this means a second surgery to replace the first artificial joint. With approximately 40 percent of the 712,000 total hip and knee replacements in the United States in 2004 performed on younger patients 45-64 years old, improving the lifetime of the titanium joints and creating a better connection with the bone becomes extremely important.

Current clinical practice includes roughening the surface of the titanium implant or coating it with a flaky, hard-to-apply ceramic that bonds directly to bone.

In collaboration with Georgia Tech School of Chemistry and Biochemistry professor David Collard, graduate students Tim Petrie and Jenny Raynor, and research technician Kellie Burns, García coated the titanium with a thin, dense polymer.

"Our coating consists of a high density of polymer strands, akin to the bristles on a toothbrush, that we can then modify to present our bio-inspired, bioactive protein," explained García.

In this case, the polymer presented controlled amounts of an engineered protein that mimics fibronectin, a protein in the body that acts as a binding site for cell surface receptors called integrins.

It is important to control the integrins binding to the titanium implant because integrins provide signals that direct bone formation. Therefore, controlling integrin binding to the titanium will result in targeted signals that enhance bone formation around the implant.

To bind integrins to titanium, researchers previously coated titanium with a small biological signal containing the sequence arginine-glycine-aspartic acid (RGD) that binds to integrins. However, this region alone binds many different integrin receptors and with much less affinity than the full fibronectin protein.

"It has been common to mimic only very small sections of fibronectin, but when you take a small section and ignore the rest of the molecule you lose specificity and activity, and therefore signaling is impaired," said García.

For that reason, García engineered a much longer region of the same type of fibronectin that included the RGD peptide sequence as well as new sections also known to have sites that participate in integrin binding.

To evaluate the in vivo performance of the coated titanium in bone healing, chemists Raynor and Collard coated the surfaces of tiny clinical-grade titanium cylinders with the polymer brushes. Then engineers Petrie and García modified them with peptide sequences.

Two-millimeter circular defects were drilled into a rat's tibia bone and the cylinders were pressed into the holes. They tested three types of coatings: uncoated titanium, titanium coated with the RGD peptide and titanium coated with different densities of the engineered fibronectin fragment.

To investigate the function of these novel surfaces in promoting bone growth, the researchers quantified osseointegration, or the growth of bone around the implant and strength of the attachment of the implant to the bone.

Analysis of the bone-implant interface four weeks later revealed extensive and contiguous bone matrix and a 70 percent enhancement in the amount of contact between the implant and bone with the titanium implants coated with the engineered fibronectin fragment over the uncoated or RGD-coated titanium.

García and Petrie tested the fixation of the implants by measuring the amount of force required to pull the implants out of the bone. The study showed significantly higher mechanical fixation of the implants coated with the engineered fibronectin fragment over the implants with the other coating and uncoated titanium.

In addition to total joint replacements, García is studying how to fill large gaps between bones, which sometimes occur after a traumatic injury or tumor removal.

"We are developing a strategy to present peptides that encourage the surrounding bone to grow in and fill in around the gap," said García.

By improving communication with the body's cells, García can control the integration and healing response of the body to any implanted device. Currently, most become encapsulated by a collagen sheath, which affects the performance and long-term viability of the device. García aims to use these biomaterials to help integrate devices implanted in the body.

Abby Vogel | EurekAlert!
Further information:
http://www.gatech.edu

More articles from Medical Engineering:

nachricht New technique to treating mitral valve diseases: First patient data
22.08.2017 | Universitätsspital Bern

nachricht New bioimaging technique is fast and economical
21.08.2017 | Rensselaer Polytechnic Institute

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Heating quantum matter: A novel view on topology

22.08.2017 | Physics and Astronomy

Stretchable biofuel cells extract energy from sweat to power wearable devices

22.08.2017 | Power and Electrical Engineering

New technique to treating mitral valve diseases: First patient data

22.08.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>