Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers coat titanium with polymer to improve integration of joint replacements

03.07.2008
Research at the Georgia Institute of Technology shows that coating a titanium implant with a new biologically inspired material enhances tissue healing, improves bone growth around the implant and strengthens the attachment and integration of the implant to the bone.

"We designed a coating that specifically communicates with cells and we're telling the cells to grow bone around the implant," said Andrés García, professor and Woodruff Faculty Fellow in Georgia Tech's Woodruff School of Mechanical Engineering and the Petit Institute for Bioengineering and Bioscience.

Details of the new coating appear in the July issue of the journal Biomaterials. The research was supported by the National Institutes of Health, the Arthritis Foundation and the Georgia Tech/Emory National Science Foundation Engineering Research Center on the Engineering of Living Tissues.

Total knee and hip replacements typically last about 15 years until the components wear down or loosen. For many younger patients, this means a second surgery to replace the first artificial joint. With approximately 40 percent of the 712,000 total hip and knee replacements in the United States in 2004 performed on younger patients 45-64 years old, improving the lifetime of the titanium joints and creating a better connection with the bone becomes extremely important.

Current clinical practice includes roughening the surface of the titanium implant or coating it with a flaky, hard-to-apply ceramic that bonds directly to bone.

In collaboration with Georgia Tech School of Chemistry and Biochemistry professor David Collard, graduate students Tim Petrie and Jenny Raynor, and research technician Kellie Burns, García coated the titanium with a thin, dense polymer.

"Our coating consists of a high density of polymer strands, akin to the bristles on a toothbrush, that we can then modify to present our bio-inspired, bioactive protein," explained García.

In this case, the polymer presented controlled amounts of an engineered protein that mimics fibronectin, a protein in the body that acts as a binding site for cell surface receptors called integrins.

It is important to control the integrins binding to the titanium implant because integrins provide signals that direct bone formation. Therefore, controlling integrin binding to the titanium will result in targeted signals that enhance bone formation around the implant.

To bind integrins to titanium, researchers previously coated titanium with a small biological signal containing the sequence arginine-glycine-aspartic acid (RGD) that binds to integrins. However, this region alone binds many different integrin receptors and with much less affinity than the full fibronectin protein.

"It has been common to mimic only very small sections of fibronectin, but when you take a small section and ignore the rest of the molecule you lose specificity and activity, and therefore signaling is impaired," said García.

For that reason, García engineered a much longer region of the same type of fibronectin that included the RGD peptide sequence as well as new sections also known to have sites that participate in integrin binding.

To evaluate the in vivo performance of the coated titanium in bone healing, chemists Raynor and Collard coated the surfaces of tiny clinical-grade titanium cylinders with the polymer brushes. Then engineers Petrie and García modified them with peptide sequences.

Two-millimeter circular defects were drilled into a rat's tibia bone and the cylinders were pressed into the holes. They tested three types of coatings: uncoated titanium, titanium coated with the RGD peptide and titanium coated with different densities of the engineered fibronectin fragment.

To investigate the function of these novel surfaces in promoting bone growth, the researchers quantified osseointegration, or the growth of bone around the implant and strength of the attachment of the implant to the bone.

Analysis of the bone-implant interface four weeks later revealed extensive and contiguous bone matrix and a 70 percent enhancement in the amount of contact between the implant and bone with the titanium implants coated with the engineered fibronectin fragment over the uncoated or RGD-coated titanium.

García and Petrie tested the fixation of the implants by measuring the amount of force required to pull the implants out of the bone. The study showed significantly higher mechanical fixation of the implants coated with the engineered fibronectin fragment over the implants with the other coating and uncoated titanium.

In addition to total joint replacements, García is studying how to fill large gaps between bones, which sometimes occur after a traumatic injury or tumor removal.

"We are developing a strategy to present peptides that encourage the surrounding bone to grow in and fill in around the gap," said García.

By improving communication with the body's cells, García can control the integration and healing response of the body to any implanted device. Currently, most become encapsulated by a collagen sheath, which affects the performance and long-term viability of the device. García aims to use these biomaterials to help integrate devices implanted in the body.

Abby Vogel | EurekAlert!
Further information:
http://www.gatech.edu

More articles from Medical Engineering:

nachricht UTSA study describes new minimally invasive device to treat cancer and other illnesses
02.12.2016 | University of Texas at San Antonio

nachricht Earlier Alzheimer's diagnosis may be possible with new imaging compound
02.11.2016 | Washington University School of Medicine

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>