Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Measuring the footprint of cells

09.06.2008
Even the slightest differences are important in competitive sport: To improve a ski jumper’s performance, the trainer can analyze the jump very accurately using force sensors.

Researchers in Jena and Bremen are planning something similar. However, their work is not with athletes but with tiny somatic cells. The experts have developed a low-cost optical sensor to measure the force with which migrating cells push themselves away from an underlying surface.

Force analysis devices like these could one day help to identify specific cell types – more reliably than using a microscope or other conventional methods.

The sensor is the outcome of an EU project. It consists of a smooth surface that is studded with 250,000 tiny plastic columns measuring only five microns in diameter, rather like a fakir’s bed of nails. These columns are made of elastic polyurethane plastic. When a cell glides across them, it bends them very slightly sideways. This deflection is registered by a digital camera and analyzed by a special software program.

The researchers working with project manager Dr. Norbert Danz of the Fraunhofer Institute for Applied Optics and Precision Engineering IOF in Jena have already shown that their ‘Cellforce’ sensor works. It will be the task of initial biological tests to show how different cell types behave. “Analysis of cell locomotion is important for numerous applications,” says Danz. “It could be used to check whether bone cells are successfully populating an implant, or how well a wound is healing.”

Developing the sensor was no easy undertaking. For one thing, the columns have to be coated in such a way that living cells are happy to move across their tips. The cells would otherwise avoid the tips and continue their journey lower down between the columns. In that case, there would be no deflection at all. Danz had the task of adapting the microscope required for cell magnification to make it exactly right for the application.

Building the delicate column structure developed by researchers at the Fraunhofer Institute for Manufacturing Engineering and Applied Materials Research IFAM in Bremen is no less tricky: The researchers press liquid plastic at a pressure of 2000 bar into a negative mold and allow it to harden. It is a challenge even to manufacture the required mold, with its 250,000 micron-sized holes.

To allow cost-effective production of the ‘Cellforce’ sensor in future, the researchers utilize commercially available plastics and well-established techniques from chip manufacture. The first ‘Cellforce’ prototype is expected to be ready in a year’s time.

Monika Weiner | alfa
Further information:
http://www.zv.fraunhofer.de
http://www.fraunhofer.de/EN/press/pi/2008/06/ResearchNews062008Topic6.jsp

More articles from Medical Engineering:

nachricht Novel PET tracer identifies most bacterial infections
06.10.2017 | Society of Nuclear Medicine and Molecular Imaging

nachricht Teleoperating robots with virtual reality
05.10.2017 | Massachusetts Institute of Technology, CSAIL

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>