Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Smart miniature pump

06.05.2008
An innovative micro-pump makes it possible for tiny quantities of liquid – such as medicines – to be dosed accurately and flexibly. Active composites and an electronic control mechanism ensure that the low-maintenance pump works accurately – both forwards and backwards.

Medicines sometimes have to be administered in extremely small quantities. Just a few tenths of a milliliter may be sufficient to give the patient the ideal treatment. Micro-pumps greatly facilitate the dosage of minute quantities.

Pumps like these have been built and constantly optimized for over 25 years. They find application in numerous areas – from medical engineering to microproduction technology – wherever tiny volumes have to be variably dosed with extreme accuracy.

However, these micro-pump systems are usually not as flexible as desired: They often work in only one direction, bubbles in the liquid impair their operation, they do not tolerate bothersome particles, they have a fixed pump output and they contain expendable parts such as valves or cogwheels. Together with partners from research institutes and industry, researchers at the Fraunhofer Institute for Mechanics of Materials IWM in Freiburg have developed an innovative pump system that solves all these problems: a controllable peristaltic micro-pump.

“The peristaltic pump is a highly complex system,” explains IWM project manager Dr. Bärbel Thielicke. “It contracts in waves in a similar way to the human esophagus, and thus propels the liquid along – it changes shape of its own accord. To achieve this, we had to use a whole range of different materials and special material composites.” The researchers use lead-zirconate-titanate (PZT) films that are joined in a suitable way with bending elements made of carbon-fiber-reinforced plastic and a flexible tube. “PZT materials change their shape as soon as you apply an electric field to them. This makes it possible to control the pump system electronically,” says Thielicke. Special adhesives additionally hold the various components of the pump system together. Thanks to the special control electronics, tiny quantities can be pumped accurately through the system.

The peristaltic pump system has already passed its first functional tests. Now the researchers are working to adapt the peristaltic micro-pump to the various different applications. “We work with special simulation models to do this,” says Thielicke. “We calculate in advance how the structure of the pump needs to be modified in order to administer other dosages or other liquids. This helps us save time and money during the development phase.”

| alfa
Further information:
http://www.zv.fraunhofer.de
http://www.fraunhofer.de/EN
http://www.fraunhofer.de/EN/bigimg/2008/rn05fo1g.jsp

More articles from Medical Engineering:

nachricht Novel breast tomosynthesis technique reduces screening recall rate
21.02.2017 | Radiological Society of North America

nachricht Biocompatible 3-D tracking system has potential to improve robot-assisted surgery
17.02.2017 | Children's National Health System

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>