Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Smart miniature pump

06.05.2008
An innovative micro-pump makes it possible for tiny quantities of liquid – such as medicines – to be dosed accurately and flexibly. Active composites and an electronic control mechanism ensure that the low-maintenance pump works accurately – both forwards and backwards.

Medicines sometimes have to be administered in extremely small quantities. Just a few tenths of a milliliter may be sufficient to give the patient the ideal treatment. Micro-pumps greatly facilitate the dosage of minute quantities.

Pumps like these have been built and constantly optimized for over 25 years. They find application in numerous areas – from medical engineering to microproduction technology – wherever tiny volumes have to be variably dosed with extreme accuracy.

However, these micro-pump systems are usually not as flexible as desired: They often work in only one direction, bubbles in the liquid impair their operation, they do not tolerate bothersome particles, they have a fixed pump output and they contain expendable parts such as valves or cogwheels. Together with partners from research institutes and industry, researchers at the Fraunhofer Institute for Mechanics of Materials IWM in Freiburg have developed an innovative pump system that solves all these problems: a controllable peristaltic micro-pump.

“The peristaltic pump is a highly complex system,” explains IWM project manager Dr. Bärbel Thielicke. “It contracts in waves in a similar way to the human esophagus, and thus propels the liquid along – it changes shape of its own accord. To achieve this, we had to use a whole range of different materials and special material composites.” The researchers use lead-zirconate-titanate (PZT) films that are joined in a suitable way with bending elements made of carbon-fiber-reinforced plastic and a flexible tube. “PZT materials change their shape as soon as you apply an electric field to them. This makes it possible to control the pump system electronically,” says Thielicke. Special adhesives additionally hold the various components of the pump system together. Thanks to the special control electronics, tiny quantities can be pumped accurately through the system.

The peristaltic pump system has already passed its first functional tests. Now the researchers are working to adapt the peristaltic micro-pump to the various different applications. “We work with special simulation models to do this,” says Thielicke. “We calculate in advance how the structure of the pump needs to be modified in order to administer other dosages or other liquids. This helps us save time and money during the development phase.”

| alfa
Further information:
http://www.zv.fraunhofer.de
http://www.fraunhofer.de/EN
http://www.fraunhofer.de/EN/bigimg/2008/rn05fo1g.jsp

More articles from Medical Engineering:

nachricht Visualizing gene expression with MRI
23.12.2016 | California Institute of Technology

nachricht Illuminating cancer: Researchers invent a pH threshold sensor to improve cancer surgery
21.12.2016 | UT Southwestern Medical Center

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>