Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Perfusion in burn injuries rapidly determined by using improved laser-Doppler technology

14.12.2007
The perfusion of a burn injury can now rapidly be determined by using a new technique developed by scientists of the University of Twente.

Using the perfusion image made by a laser and an ultra fast camera, doctors will be able to determine whether a burn needs surgery. The new measuring device, developed under supervision of dr. Wiendelt Steenbergen of the Biophysical Engineering group, has been successfully tested at the hospital Martini Ziekenhuis in Groningen.

Tests in hospital show that the system is perfectly capable of measuring differences in perfusion in burn wounds; patients and medical staff are positive about the high speed of the system and the quality of the images.

A burn that shows good perfusion, has a better chance of healing by itself: no surgery is needed. In many cases, the visual inspection is not sufficient to take a decision on the necessity of surgery. This can lead to unnecessary surgery or, on the other hand, to unwanted delays when surgery is the best option. Compared to current perfusion measurements, the new technique is much faster. Scanning techniques take minutes of time for some square centimeters of skin, during which time the patient is not allowed to move. The new technique will be capable of imaging an entire surface of ten by ten centimeter in a fraction of a second.

Doppler effect
In order to reach this high speed, the entire surface is lit at once using a wide laser beam. A high speed camera, capable of taking 27000 shots per second, takes images of the tissue. Whenever laser light is scattered by moving rood blood cells, this is visible in the intensity of the pixels; due to the Doppler effect, a colour shift will be visible. From the resulting ‘movie’ of the tissue, a perfusion image can be made.

Apart from this promising application in determing perfusion in burn injuries, Wiendelt Steenbergen predicts other applications, for example in evaluating the uptake of medication through the skin, or in testing allergic reactions. In evaluating diabetic micro circulation problems, the new technique could be an attractively fast alternative to current approaches as well.

Wiebe van der Veen | alfa
Further information:
http://www.utwente.nl
http://bpe.tnw.utwente.nl

More articles from Medical Engineering:

nachricht Penn first in world to treat patient with new radiation technology
22.09.2017 | University of Pennsylvania School of Medicine

nachricht Skin patch dissolves 'love handles' in mice
18.09.2017 | Columbia University Medical Center

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>