Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Perfusion in burn injuries rapidly determined by using improved laser-Doppler technology

14.12.2007
The perfusion of a burn injury can now rapidly be determined by using a new technique developed by scientists of the University of Twente.

Using the perfusion image made by a laser and an ultra fast camera, doctors will be able to determine whether a burn needs surgery. The new measuring device, developed under supervision of dr. Wiendelt Steenbergen of the Biophysical Engineering group, has been successfully tested at the hospital Martini Ziekenhuis in Groningen.

Tests in hospital show that the system is perfectly capable of measuring differences in perfusion in burn wounds; patients and medical staff are positive about the high speed of the system and the quality of the images.

A burn that shows good perfusion, has a better chance of healing by itself: no surgery is needed. In many cases, the visual inspection is not sufficient to take a decision on the necessity of surgery. This can lead to unnecessary surgery or, on the other hand, to unwanted delays when surgery is the best option. Compared to current perfusion measurements, the new technique is much faster. Scanning techniques take minutes of time for some square centimeters of skin, during which time the patient is not allowed to move. The new technique will be capable of imaging an entire surface of ten by ten centimeter in a fraction of a second.

Doppler effect
In order to reach this high speed, the entire surface is lit at once using a wide laser beam. A high speed camera, capable of taking 27000 shots per second, takes images of the tissue. Whenever laser light is scattered by moving rood blood cells, this is visible in the intensity of the pixels; due to the Doppler effect, a colour shift will be visible. From the resulting ‘movie’ of the tissue, a perfusion image can be made.

Apart from this promising application in determing perfusion in burn injuries, Wiendelt Steenbergen predicts other applications, for example in evaluating the uptake of medication through the skin, or in testing allergic reactions. In evaluating diabetic micro circulation problems, the new technique could be an attractively fast alternative to current approaches as well.

Wiebe van der Veen | alfa
Further information:
http://www.utwente.nl
http://bpe.tnw.utwente.nl

More articles from Medical Engineering:

nachricht Rutgers researchers develop automated robotic device for faster blood testing
14.06.2018 | Rutgers University

nachricht Speech comprehension with a cochlear implant
04.06.2018 | Universität zu Lübeck

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

Im Focus: Water is not the same as water

Water molecules exist in two different forms with almost identical physical properties. For the first time, researchers have succeeded in separating the two forms to show that they can exhibit different chemical reactivities. These results were reported by researchers from the University of Basel and their colleagues in Hamburg in the scientific journal Nature Communications.

From a chemical perspective, water is a molecule in which a single oxygen atom is linked to two hydrogen atoms. It is less well known that water exists in two...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Scientists predict a new superhard material with unique properties

18.06.2018 | Materials Sciences

Squeezing light at the nanoscale

18.06.2018 | Physics and Astronomy

A sprinkle of platinum nanoparticles onto graphene makes brain probes more sensitive

15.06.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>