Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Perfusion in burn injuries rapidly determined by using improved laser-Doppler technology

14.12.2007
The perfusion of a burn injury can now rapidly be determined by using a new technique developed by scientists of the University of Twente.

Using the perfusion image made by a laser and an ultra fast camera, doctors will be able to determine whether a burn needs surgery. The new measuring device, developed under supervision of dr. Wiendelt Steenbergen of the Biophysical Engineering group, has been successfully tested at the hospital Martini Ziekenhuis in Groningen.

Tests in hospital show that the system is perfectly capable of measuring differences in perfusion in burn wounds; patients and medical staff are positive about the high speed of the system and the quality of the images.

A burn that shows good perfusion, has a better chance of healing by itself: no surgery is needed. In many cases, the visual inspection is not sufficient to take a decision on the necessity of surgery. This can lead to unnecessary surgery or, on the other hand, to unwanted delays when surgery is the best option. Compared to current perfusion measurements, the new technique is much faster. Scanning techniques take minutes of time for some square centimeters of skin, during which time the patient is not allowed to move. The new technique will be capable of imaging an entire surface of ten by ten centimeter in a fraction of a second.

Doppler effect
In order to reach this high speed, the entire surface is lit at once using a wide laser beam. A high speed camera, capable of taking 27000 shots per second, takes images of the tissue. Whenever laser light is scattered by moving rood blood cells, this is visible in the intensity of the pixels; due to the Doppler effect, a colour shift will be visible. From the resulting ‘movie’ of the tissue, a perfusion image can be made.

Apart from this promising application in determing perfusion in burn injuries, Wiendelt Steenbergen predicts other applications, for example in evaluating the uptake of medication through the skin, or in testing allergic reactions. In evaluating diabetic micro circulation problems, the new technique could be an attractively fast alternative to current approaches as well.

Wiebe van der Veen | alfa
Further information:
http://www.utwente.nl
http://bpe.tnw.utwente.nl

More articles from Medical Engineering:

nachricht 3-D printed kidney phantoms aid nuclear medicine dosing calibration
06.12.2016 | Society of Nuclear Medicine

nachricht UTSA study describes new minimally invasive device to treat cancer and other illnesses
02.12.2016 | University of Texas at San Antonio

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Simple processing technique could cut cost of organic PV and wearable electronics

06.12.2016 | Materials Sciences

3-D printed kidney phantoms aid nuclear medicine dosing calibration

06.12.2016 | Medical Engineering

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>