Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Notre Dame imaging specialists create 3-D images to aid surgeons

04.04.2013
University of Notre Dame researchers have successfully created three-dimensional anatomical models from CT scans using 3-D printing technology, a process that holds promise for medical professionals and their patients.

A paper by the researchers, "3D Printing of Preclinical X-ray Computed Tomographic Data Sets," was published in the Journal of Visualized Experiments this week.

The strategy was initiated last spring by then-freshman Evan Doney, a Glynn Family Honors student in the laboratory of W. Matthew Leevy, research assistant professor at the Notre Dame Integrated Imaging Facility. "It's a very clever idea," Leevy says. "He did a lot of it independently. He figured out how to convert the tomographic data to a surface map for editing and subsequent 3D printing."

The paper reports results based on using X-ray CT data sets from a living Lobund-Wistar rat from the Freimann Life Science Center and from the preserved skull of a New Zealand White Rabbit in the laboratory of Matthew Ravosa. Coauthors of the article with Doney, Leevy, and Ravosa are Lauren Krumdick, Justin Diener, Connor Wathen, Sarah Chapman, Jeremiah Scott and Tony Van Avermaete, all of Notre Dame, and Brian Stamile of MakerBot Industries LLC, a 3-D printing company.

"With proper data collection, surface rendering, and stereolithographic editing, it is now possible and inexpensive to rapidly produce detailed skeletal and soft tissue structures from X-ray CT data," the paper says. The translation of pre-clinical 3D data to a physical object that is an exact copy of the test subject is a powerful tool for visualization and communication, especially for relating imaging research to students, or those in other fields."

"Our project with 3-D printing is part of a broader story about 3-D printing in general," Leevy says, adding that the work has spawned several more ideas and opportunities, such as providing inexpensive models for anatomy students. "There's a market for these bones, both from animals and from humans, and we can create them at incredibly low cost. We're going to explore a lot of these markets."

A clinical collaborator, Dr. Douglas Liepert from Allied Physicians of Michiana, is enabling the researchers to print non-identifiable human data, expanding the possibilities. "Not only can we print bone structure, but we're starting to collect patient data and print out the anatomical structure of patients with different disease states to aid doctors in surgical preparation," Leevy says.

Matthew Leevy | EurekAlert!
Further information:
http://www.nd.edu

More articles from Medical Engineering:

nachricht UCLA engineers use deep learning to reconstruct holograms and improve optical microscopy
22.11.2017 | University of California - Los Angeles

nachricht First transcatheter implant for diastolic heart failure successful
16.11.2017 | The Ohio State University Wexner Medical Center

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Corporate coworking as a driver of innovation

22.11.2017 | Business and Finance

PPPL scientists deliver new high-resolution diagnostic to national laser facility

22.11.2017 | Physics and Astronomy

Quantum optics allows us to abandon expensive lasers in spectroscopy

22.11.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>