Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Seeing melanoma

12.08.2010
A new imaging technique creates detailed three-dimensional images of the deadliest form of skin cancer

Melanoma is one of the less common types of skin cancer but it accounts for the majority of the skin cancer deaths (about 75 percent).

The five-year survival rate for early stage melanoma is very high (98 percent), but the rate drops precipitously if the cancer is detected late or there is recurrence.

So a great deal rides on the accuracy of the initial surgery, where the goal is to remove as little tissue as possible while obtaining “clean margins” all around the tumor.

So far no imaging technique has been up to the task of defining the melanoma's boundaries accurately enough to guide surgery.

Instead surgeons tend to cut well beyond the visible margins of the lesion in order to be certain they remove all the malignant tissue.

Two scientists at Washington University in St. Louis have developed technologies that together promise to solve this difficult problem.

Their solution, described in the July issue of ACS Nano, combines an imaging technique developed by Lihong Wang, PhD, the Gene K. Beare Distinguished Professor of Biomedical Engineering, and a contrast agent developed by Younan Xia, PhD, the James M. McKelvey Professor of Biomedical Engineering.

Together the imaging technique and contrast agent produce images of startling three-dimensional clarity.

VIDEO NEWS RELEASE
Photoacoustic image of melanoma With the help of nanoparticles, that are engineered to absorb light strongly, and to bind to proteins on cancerous cells, a melanoma is revealed in stunning clarity. To capture the overlaying blood vessels, the imaging system is then tuned to a different wavelength that is strongly absorbed by hemoglobin.

The imaging technique is based on the photoacoustic effect discovered by Alexander Graham Bell 100 years ago. Bell exploited the effect in what he considered his greatest invention ever, the photophone, which converted sound to light, transmitted the light and then converted it back to sound at the receiver.

(The public preferred the telephone to the photophone, by some facetious accounts because they just didn’t believe wireless transmission was really possible.)

In Bell’s effect, the absorption of light heats a material slightly, typically by a matter of millikelvins, and the temperature rise causes thermoelastic expansion.

“Much the same thing happens,” says Wang “when you heat a balloon and it expands.”

If the light is pulsed at the right frequency, the material will expand and contract, generating a sound wave.

“We detect the sound signal outside the tissue, and from there on, it’s a mathematical problem,” says Wang. “We use a computer to reconstruct an image.”

“We’re essentially listening to a structure instead of looking at it,” says Wang.

“Using pure optical imaging, it is hard to look deep into tissues because light is absorbed and scattered,” Wang explains. “The useful photons run out of juice within one millimeter.”

Lihong Wang with the photoacoustic imaging system built in his lab. The photoacoustic technique had been used in the 1980s to test non-biological materials for cracks, but in 2003. Wang and his colleagues published startling photoacoustic images of a rat brain, taken through the skin and skull, that showed how the brain responded when the rat’s whiskers were touched. Today more papers are published about photoacoustic imaging than any other type of optical imaging, says Wang.

Photoacoustic tomography (PAT) can detect deep structures that strongly absorb light because sound scatters much less than light in tissue.

“PAT improves tissue transparency by two to three orders of magnitude,” says Wang.

Moreover, it’s a lot safer than other means of deep imaging. It uses photons whose energy is only a couple of electron-volts, whereas X-rays have energies in the thousands of electron-volts. Positron emission tomography (PET) also requires high-energy photons, Wang says.

A smart contrast agent

Photoacoustic images of biological tissue can be made without the use of contrast agents, particularly if tissues are pigmented by molecules like hemoglobin or melanin.

Still, photoacoustic images of melanomas are fuzzy and vague around the edges. To improve the contrast between the malignant and normal tissue, Xia loads the malignant tissue with gold.

“Gold is much better at scattering and absorbing light than biological materials,” Xia says. “One gold nanocage absorbs as much light as a million melanin molecules,” says Xia.

Xia’s contrast agent consists of hollow gold cages, so tiny they can only be seen through the color they collectively lend to the liquid in which they float.

By altering the size and geometry of the particles, they can be tuned to absorb or scatter light over a wide range of wavelengths.

In this way the nanoparticles behave quite differently than bulk gold.

For photoacoustic imaging, Xia’s team tunes the nanocages to absorb strongly at 780 nanometers, a wavelength that falls within a narrow window of tissue transparency in the near-infrared.

Light in this sweet spot can penetrate as deep as several inches in the body.

Once injected, the gold particles naturally tend to accumulate in tumors because the cells that line a tumor’s blood vessels are disorganized and leaky.

But Xia has dramatically increased the uptake rate by decorating the nanoparticles with a hormone that binds to hormone receptors on the melanoma’s cells.

The molecule is alpha-melanocyte-stimulating hormone, slightly altered to make it more stable in the body. This hormone normally stimulates the production and release of the brown pigment melanin in the skin and hair.

As is true in many types of cancers, this hormone seems to stimulate the growth of cancerous cells, which produce more hormone receptors than normal cells.

In experiments with mice, melanomas took up four times as many “functionalized” nanocages than nanocages coated with an inert chemical. With the contrast agent, the photoacoustic signal from the melanoma was 36 percent stronger.

But seeing is believing. Subcutaneous mouse melanomas barely visible to the unaided eye show up clearly in the photoacoustic images, their subterranean peninsulas and islands of malignancy starkly revealed.

Diana Lutz | EurekAlert!
Further information:
http://www.wustl.edu
http://news.wustl.edu/news/Pages/21014.aspx

More articles from Medical Engineering:

nachricht PET identifies which prostate cancer patients can benefit from salvage radiation treatment
05.12.2017 | Society of Nuclear Medicine and Molecular Imaging

nachricht Designing a golden nanopill
01.12.2017 | University of Texas at Austin, Texas Advanced Computing Center

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

Im Focus: A transistor of graphene nanoribbons

Transistors based on carbon nanostructures: what sounds like a futuristic dream could be reality in just a few years' time. An international research team working with Empa has now succeeded in producing nanotransistors from graphene ribbons that are only a few atoms wide, as reported in the current issue of the trade journal "Nature Communications."

Graphene ribbons that are only a few atoms wide, so-called graphene nanoribbons, have special electrical properties that make them promising candidates for the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

Blockchain is becoming more important in the energy market

05.12.2017 | Event News

 
Latest News

Making fuel out of thick air

08.12.2017 | Life Sciences

Rules for superconductivity mirrored in 'excitonic insulator'

08.12.2017 | Information Technology

Smartphone case offers blood glucose monitoring on the go

08.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>