Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Magnetically controlled pill could boost body's absorption of drugs

18.01.2011
Do you want that in a pill or a shot? A pill, thank you, but most patients never have that choice. The problem with administering many medications orally is that a pill often will not dissolve at exactly the right site in the gastrointestinal tract where the medicine can be absorbed into the bloodstream.

A new magnetic pill system developed by Brown University researchers could solve the problem by safely holding a pill in place in the intestine wherever it needs to be.

The scientists describe the harmless operation of their magnetic pill system in rats online the week of Jan. 17 in the Proceedings of the National Academy of Sciences. Applied to people in the future, said senior author Edith Mathiowitz, the technology could provide a new way to deliver many drugs to patients, including those with cancer or diabetes. It could also act as a powerful research tool to help scientists understand exactly where in the intestine different drugs are best absorbed.

"With this technology you can now tell where the pill is placed, take some blood samples and know exactly if the pill being in this region really enhances the bioavailability of the medicine in the body," said Mathiowitz, professor of medical science in Brown's Department of Molecular Pharmacology, Physiology, and Biotechnology. "It's a completely new way to design a drug delivery system."

The two main components of the system are conventional-looking gelatin capsules that contain a tiny magnet, and an external magnet that can precisely sense the force between it and the pill and vary that force, as needed, to hold the pill in place. The external magnet can sense the pill's position, but because the pill is opaque to x-rays, the researchers were also able to see the pill in the rat's bodies during their studies.

Safety first

The system is not the first attempt to guide pills magnetically, but it is the first one in which scientists can control the forces on a pill so that it's safe to use in the body. They designed their system to sense the position of pills and hold them there with a minimum of force.

"The most important thing is to be able to monitor the forces that you exert on the pill in order to avoid damage to the surrounding tissue," said Mathiowitz. "If you apply a little more than necessary force, your pill will be pulled to the external magnet, and this is a problem."

To accomplish this, the team including lead author and former graduate student Bryan Laulicht took careful measurements and built an external magnet system with sophisticated computer control and feedback mechanisms.

"The greatest challenges were quantifying the required force range for maintaining a magnetic pill in the small intestines and constructing a device that could maintain intermagnetic forces within that range," said Laulicht, who is now a postdoctoral scholar at MIT.

Even after holding a pill in place for 12 hours in the rats, the system applied a pressure on the intestinal wall that was less than 1/60th of what would be damaging.

The next step in the research is to begin delivering drugs using the system and testing their absorption, Mathiowitz and Laulicht said.

"Then it will move to larger animal models and ultimately into the clinic," Laulicht said. "It is my hope that magnetic pill retention will be used to enable oral drug delivery solutions to previously unmet medical needs."

In addition to Mathiowitz and Laulicht, authors on the paper include Brown researchers Nicholas Gidmark and Anubhav Tripathi. Brown University funded the research.

David Orenstein | EurekAlert!
Further information:
http://www.brown.edu

More articles from Medical Engineering:

nachricht Medical gamma-ray camera is now palm-sized
23.05.2017 | Waseda University

nachricht Computer accurately identifies and delineates breast cancers on digital tissue slides
11.05.2017 | Case Western Reserve University

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

New insights into the ancestors of all complex life

29.05.2017 | Earth Sciences

New photocatalyst speeds up the conversion of carbon dioxide into chemical resources

29.05.2017 | Life Sciences

NASA's SDO sees partial eclipse in space

29.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>