Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Magnetically controlled pill could boost body's absorption of drugs

18.01.2011
Do you want that in a pill or a shot? A pill, thank you, but most patients never have that choice. The problem with administering many medications orally is that a pill often will not dissolve at exactly the right site in the gastrointestinal tract where the medicine can be absorbed into the bloodstream.

A new magnetic pill system developed by Brown University researchers could solve the problem by safely holding a pill in place in the intestine wherever it needs to be.

The scientists describe the harmless operation of their magnetic pill system in rats online the week of Jan. 17 in the Proceedings of the National Academy of Sciences. Applied to people in the future, said senior author Edith Mathiowitz, the technology could provide a new way to deliver many drugs to patients, including those with cancer or diabetes. It could also act as a powerful research tool to help scientists understand exactly where in the intestine different drugs are best absorbed.

"With this technology you can now tell where the pill is placed, take some blood samples and know exactly if the pill being in this region really enhances the bioavailability of the medicine in the body," said Mathiowitz, professor of medical science in Brown's Department of Molecular Pharmacology, Physiology, and Biotechnology. "It's a completely new way to design a drug delivery system."

The two main components of the system are conventional-looking gelatin capsules that contain a tiny magnet, and an external magnet that can precisely sense the force between it and the pill and vary that force, as needed, to hold the pill in place. The external magnet can sense the pill's position, but because the pill is opaque to x-rays, the researchers were also able to see the pill in the rat's bodies during their studies.

Safety first

The system is not the first attempt to guide pills magnetically, but it is the first one in which scientists can control the forces on a pill so that it's safe to use in the body. They designed their system to sense the position of pills and hold them there with a minimum of force.

"The most important thing is to be able to monitor the forces that you exert on the pill in order to avoid damage to the surrounding tissue," said Mathiowitz. "If you apply a little more than necessary force, your pill will be pulled to the external magnet, and this is a problem."

To accomplish this, the team including lead author and former graduate student Bryan Laulicht took careful measurements and built an external magnet system with sophisticated computer control and feedback mechanisms.

"The greatest challenges were quantifying the required force range for maintaining a magnetic pill in the small intestines and constructing a device that could maintain intermagnetic forces within that range," said Laulicht, who is now a postdoctoral scholar at MIT.

Even after holding a pill in place for 12 hours in the rats, the system applied a pressure on the intestinal wall that was less than 1/60th of what would be damaging.

The next step in the research is to begin delivering drugs using the system and testing their absorption, Mathiowitz and Laulicht said.

"Then it will move to larger animal models and ultimately into the clinic," Laulicht said. "It is my hope that magnetic pill retention will be used to enable oral drug delivery solutions to previously unmet medical needs."

In addition to Mathiowitz and Laulicht, authors on the paper include Brown researchers Nicholas Gidmark and Anubhav Tripathi. Brown University funded the research.

David Orenstein | EurekAlert!
Further information:
http://www.brown.edu

More articles from Medical Engineering:

nachricht New imaging technique able to watch molecular dynamics of neurodegenerative diseases
14.07.2017 | The Optical Society

nachricht Quick test finds signs of sepsis in a single drop of blood
03.07.2017 | University of Illinois at Urbana-Champaign

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>