Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Laser Light in Operation for Medical Technology

30.09.2010
The Fraunhofer Institute for Laser Technology ILT is presenting a laser-based process to manufacture tailor-made implants at COMPAMED, the international trade fair for high tech solutions for medical technology.

In addition, the experts will be showing the professional audience processes to laser weld plastics for medical components without leaving welding seams as well as to laser polish metal.


A biodegradable skull implant made out of PLA/â-TCP by means of SLM in cooperation with the KLS Martin group and the Dental Materials and Biomaterials Research (ZWBF) at the University Hospital Aachen. Fraunhofer Institute for Laser Technology ILT, Aachen


A laser-welded, transparent microfluidic component made of plastic. Fraunhofer Institute for Laser Technology ILT, Aachen

At the IVAM joint stand H 19.1 in Hall 8a at this year’s Compamed (in Dusseldorf, Nov. 17 to 19, 2010), the Fraunhofer ILT is presenting tailor-made biodegradable implants. They were produced using Selective Laser Melting (SLM), an additive laser manufacturing process. Thanks to their interconnective pore system, these implants made of β-tricalcium phosphate enhance stromal and vascular cells’ ingrowth ability. In addition, porous implants made of a titanium alloy, manufactured using SLM, will be shown.

Another area where lasers can be used in medical technology is the polishing of metal. In this case, the laser beam melts the material surface to a depth of about 5 microns. The surface tension ensures that the fluid metal flows evenly and dries smoothed. This process developed by Fraunhofer ILT is interesting for all medical-technical components with metallic surfaces that need to have an extremely low roughness. Manufacturers can see examples of such components at the IVAM stand.

For medical-technical products made out of plastics the Fraunhofer ILT will be presenting an efficient welding process. The TransTWIST process (Transmission Welding by an Incremental Scanning Technique) allows two transparent joining partners to be connected together in an overlap by means of laser radiation without the need for additional absorbers. In contrast to conventional laser welding, expensive pretreatment steps can be omitted. The end user thus saves time and money. Thanks to the laser welding machine TransTWIST, extremely high-quality welding seams can be made, which fulfill all established requirements upon the end result as to invisible welding seams and expansion in the heat affected zone. A main area of application is in medical technology, especially microfluidics.

Contact Partners at the Fraunhofer ILT
Our experts would be glad to answer any questions you may have:
Dipl.-Ing. Christian Nüsser
Polishing
Telephone: +49 241 8906-669
christian.nuesser@ilt.fraunhofer.de
Dipl.-Ing Andrei Lucian Boglea
Microjoining
Telephone +49 241 8906-217
andrei.boglea@ilt.fraunhofer.de
Dr. Arnold Gillner
Competence Area Manager Ablating and Joining
Telephone +49 241 8906-148
arnold.gillner@ilt.fraunhofer.de
Fraunhofer Institute for Laser Technology ILT
Steinbachstraße 15
52074 Aachen
Germany
Tel. +49 241 8906-0
Fax. +49 241 8906-121

Axel Bauer | Fraunhofer-Institut
Further information:
http://www.ilt.fraunhofer.de

More articles from Medical Engineering:

nachricht Rutgers researchers develop automated robotic device for faster blood testing
14.06.2018 | Rutgers University

nachricht Speech comprehension with a cochlear implant
04.06.2018 | Universität zu Lübeck

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

Im Focus: Water is not the same as water

Water molecules exist in two different forms with almost identical physical properties. For the first time, researchers have succeeded in separating the two forms to show that they can exhibit different chemical reactivities. These results were reported by researchers from the University of Basel and their colleagues in Hamburg in the scientific journal Nature Communications.

From a chemical perspective, water is a molecule in which a single oxygen atom is linked to two hydrogen atoms. It is less well known that water exists in two...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

A sprinkle of platinum nanoparticles onto graphene makes brain probes more sensitive

15.06.2018 | Materials Sciences

100 % Organic Farming in Bhutan – a Realistic Target?

15.06.2018 | Ecology, The Environment and Conservation

Perovskite-silicon solar cell research collaboration hits 25.2% efficiency

15.06.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>