Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Better insights needed into failure mechanisms of hip replacements

01.10.2008
If a hip prosthesis implanted to replace a worn-out joint itself fails, then what are the reasons? Until now this problem has been little understood: partly due to incomplete records, partly due to insufficient knowledge of the forces acting on the hip replacement.

Computation models developed by the University of Twente and UMC St. Radboud can make an important contribution to our understanding in this field, says Prof. Nico Verdonschot in his inaugural lecture as Professor of Implantation Biomechanics at the University of Twente. Such models can, for instance, predict the strength of a bone much better than a specialist can do visually using an X-ray image.

Prosthetic replacements for joints such as the hip and the knee are available in many types and sizes. But which prosthesis is the best for which patient? Verdonschot aims to find answers to this question by combining his experience at the Orthopaedic Research Lab in Nijmegen with the considerable expertise in mechanics present at the University of Twente. Indeed, Twente researchers have advanced computation tools for calculating the strength of constructions. They have also developed a sophisticated muscle-skeleton model in which all the forces in play can be simulated. By combining this model with experience from the clinic, Verdonschot expects to achieve a leading position in research into the functioning and the lifespan of joint replacements.

At the same time he points to the lack of proper records in the Netherlands: it was only in spring of this year that medical authorities began to record how long a joint replacement lasts. These data are not yet linked to death registers, meaning that they do not always provide adequate information. Minister of Health Abraham Klink, in answer to a parliamentary question, has already stated that he is not aware that poor-quality prosthetic joints are on the market. ‘Not aware’ is indeed the only correct term, remarks Verdonschot: the records simply doesn’t exist. Sweden, by contrast, does have a comprehensive registration system from which much can be learned.

Bone strength

The type of calculation model that calculates the forces acting on joint prostheses is also suitable for predicting the strength of a bone itself, for instance if the bone is subject to metastases and weaker points in the structure that can lead to a spontaneous fracture. The models can make this prediction much more effectively than a specialist who makes a visual estimation based on an X-ray image: the model generates 86 percent correct predictions, while the doctors score between 25 and 50 percent. The predictions can then be used to make a recommendation on, for instance, a surgical operation to reinforce the bone. Verdonschot also discusses the trend which involves using the body’s own processes instead of a prosthesis. In regenerative medicine, for instance, stem cells are cultivated to create new bone tissue: to date this approach certainly cannot replace an artificial joint, but it can help the prosthesis to connect better with the existing bone. The stem cells can be manipulated to create bone tissue that has the same preferred direction as the bone in which it is inserted.

The appointment of Verdonschot, who is himself a Mechanical Engineering alumnus of the UT, is in line with the strengthening of the university’s health care profile and the close collaboration with hospitals and other care institutions. Technology can be successfully integrated in the clinic only if all parties work closely together right from the start. The combination with the calculation models may seem a small step but, according to the new professor, it may bring great consequences.

Prof. Nico Verdonschot held his inaugural lecture ‘De reis van techniek naar kliniek’ (‘The path from the technological to the clinical’) on 25 September 2008.

Wiebe van der Veen | alfa
Further information:
http://www.utwente.nl
http://www.utwente.nl/nieuws/pers/en/cont_08-038_en.doc/

More articles from Medical Engineering:

nachricht Penn first in world to treat patient with new radiation technology
22.09.2017 | University of Pennsylvania School of Medicine

nachricht Skin patch dissolves 'love handles' in mice
18.09.2017 | Columbia University Medical Center

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent

25.09.2017 | Power and Electrical Engineering

Usher syndrome: Gene therapy restores hearing and balance

25.09.2017 | Health and Medicine

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>