Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New high-speed 3-D imaging system holds potential for improved cancer screening

02.08.2011
Optical coherence tomography technology developed by MIT team enables endoscopes to see below surface of colon, esophagus

Researchers at the Massachusetts Institute of Technology (MIT) have developed a new imaging system that enables high-speed, three-dimensional (3-D) imaging of microscopic pre-cancerous changes in the esophagus or colon.

The new system, described in the Optical Society's (OSA) open access journal Biomedical Optics Express, is based on an emerging technology called optical coherence tomography (OCT), which offers a way to see below the surface with 3-D, microscopic detail in ways that traditional screening methods can't.

Endoscopy is the method of choice for cancer screening of the colon or esophagus. In the procedure, a tiny camera attached to a long thin tube is snaked into the colon or down the throat, giving doctors a relatively non-invasive way to look for abnormalities. But standard endoscopy can only examine the surface of tissues, and thus may miss important changes occurring inside tissue that indicate cancer development.

OCT, which can examine tissue below the surface, is analogous to medical ultrasound imaging except that it uses light instead of sound waves to visualize structures in the body in real time, and with far higher resolution; OCT can visualize structures just a few millionths of a meter in size. Over the past two decades, OCT has become commonplace in ophthalmology, where it is being used to generate images of the retina and to help diagnose and monitor diseases like glaucoma, and has emerging applications in cardiology, where it's used to examine unstable plaques in blood vessels that can trigger heart attacks.

The new endoscopic OCT imaging system reported by OCT pioneer James G. Fujimoto of MIT and his colleagues, works at record speeds, capturing data at a rate of 980 frames (equivalent to 480,000 axial scans) per second—nearly 10 times faster than previous devices—while imaging microscopic features less than 8 millionths of a meter in size.

At such high speeds and super-fine resolution, the novel system promises to enable 3-D microscopic imaging of pre-cancerous changes in the esophagus or colon and the guidance of endoscopic therapies. Esophageal and colon cancer are diagnosed in more than 1.5 million people worldwide each year, according to the American Cancer Society.

"Ultrahigh-speed imaging is important because it enables the acquisition of large three-dimensional volumetric data sets with micron-scale resolution," says Fujimoto, a professor of electrical engineering and computer science and senior author of the paper.

"This new system represents a significant advance in real-time, 3-D endoscopic OCT imaging in that it offers the highest volumetric imaging speed in an endoscopic setting, while maintaining a small probe size and a low, safe drive voltage," says Xingde Li, associate professor at the Whitaker Biomedical Engineering Institute and Department of Biomedical Engineering at Johns Hopkins University, who is not affiliated with the research team.

In OCT imaging, microscopic-scale structural and pathological features are examined by directing a beam of light on a tissue and measuring the magnitude and echo time-delay of backscattered light. Because the amount of light that can be recaptured and analyzed decreases quickly with depth in tissue due to scattering, the technique can generally only be used to visualize sub-surface features to a depth of 1 to 2 millimeters. "However these depths are comparable to those sampled by pinch biopsies and unlike biopsy, information is available in real time," Fujimoto says. By using miniature fiber optic scanning catheters or probes, either on their own or in combination with standard endoscopes, colonoscopes, or laparoscopes, OCT imaging can be performed inside the body.

In collaboration with clinicians at the VA Boston Healthcare System and Harvard Medical School, the team is investigating endoscopic OCT as a method for guiding excisional biopsy—the removal of tissue for histological examination—to reduce false negative rates and improve diagnostic sensitivity.

"Excisional biopsy is one of the gold standards for the diagnosis of cancer, but is a sampling procedure. If the biopsy is taken in a normal region of tissue and misses the cancer, the biopsy result is negative although the patient still has cancer," notes Fujimoto, whose team is one of a number of research groups—including at Johns Hopkins University; the University of California, Irvine; Case Western University; and Massachusetts General Hospital—that are actively pursuing the development of smaller, faster endoscopic OCT systems.

Endoscopic OCT requires miniature optical catheters or probes—just a few millimeters in diameter—that can scan an optical beam in two dimensions to generate high-resolution 3-D data sets. Scanning the beam in one transverse direction generates an image in a cross-sectional plane, whereas scanning the beam in two directions generates a stack of cross-sectional images—that is, a 3-D (or volumetric), image.

"This device development is one of the major technical challenges in endoscopic OCT because probes must be small enough so that they can be introduced into the body, but still be able to scan an optical beam at high speeds," Fujimoto says. "Increasing imaging speeds has also been an important research objective because high-resolution volumetric imaging requires very large amounts of data in order to cover appreciable regions of tissue, so rapid image acquisition rates are a powerful advantage."

The optical catheter developed by the MIT researchers and their collaborators uses a piezoelectric transducer, a miniature device that bends in response to electrical current, allowing a laser-light emitting optical fiber to be rapidly scanned over the area to be imaged.

So far, the device—which must be further reduced in size, Fujimoto notes, before it can be deployed with the standard endoscopes now used—has only been used in animal models and in samples of human colons that had been removed during surgical procedures; further development and testing of the technology is needed before it can be tested in human patients. "The ultimate clinical utility of new devices must be established by large clinical studies, which assess the ability of the technology to improve diagnoses or therapy," he says. "This is a much more complex and lengthy task than the initial development of the technology itself."

The paper, titled "Piezoelectric Transducer Based Miniature Catheter for Ultrahigh Speed Endoscopic Optical Coherence Tomography," was also coauthored by Tsung-Han Tsai, Benjamin Potsaid, Martin F. Krauss, Chao Zhou, Yuankai K. Tao, and Joachim Hornegger, and appears in the Aug. 1 issue of Biomedical Optics Express (vol. 2, issue 8, pp. 2438-2448). http://www.opticsinfobase.org/boe/abstract.cfm?uri=boe-2-8-2438

EDITOR'S NOTE: A high-resolution image of a 3-D OCT volumetric data set from an excised human colon specimen is available upon request. Contact astark@osa.org.

About Biomedical Optics Express

Biomedical Optics Express is OSA's principal outlet for serving the biomedical optics community with rapid, open-access, peer-reviewed papers related to optics, photonics and imaging in the life sciences. The journal scope encompasses theoretical modeling and simulations, technology development, and biomedical studies and clinical applications. It is published by the Optical Society and edited by Joseph A. Izatt of Duke University. Biomedical Optics Express is an open-access journal and is available at no cost to readers online at http://www.OpticsInfoBase.org/BOE.

About OSA

Uniting more than 106,000 professionals from 134 countries, the Optical Society (OSA) brings together the global optics community through its programs and initiatives. Since 1916 OSA has worked to advance the common interests of the field, providing educational resources to the scientists, engineers and business leaders who work in the field by promoting the science of light and the advanced technologies made possible by optics and photonics. OSA publications, events, technical groups and programs foster optics knowledge and scientific collaboration among all those with an interest in optics and photonics.

Angela Stark | EurekAlert!
Further information:
http://www.osa.org

More articles from Medical Engineering:

nachricht Visualizing gene expression with MRI
23.12.2016 | California Institute of Technology

nachricht Illuminating cancer: Researchers invent a pH threshold sensor to improve cancer surgery
21.12.2016 | UT Southwestern Medical Center

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists spin artificial silk from whey protein

X-ray study throws light on key process for production

A Swedish-German team of researchers has cleared up a key process for the artificial production of silk. With the help of the intense X-rays from DESY's...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Breaking the optical bandwidth record of stable pulsed lasers

24.01.2017 | Physics and Astronomy

Choreographing the microRNA-target dance

24.01.2017 | Life Sciences

Spanish scientists create a 3-D bioprinter to print human skin

24.01.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>