Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Extremely exact images from inside the body

It will be the only magnetic resonance tomograph of the modern 7 tesla generation in the world, in which a metrology institute is also involved.

Magnetic resonance tomographs, which use a magnetic field of 7 tesla, have not yet been in operation in hospitals and clinics, but have solely served research. For the first time in the world, cardiovascular research carried out on such a device is now also to play an important role.

The magnetic resonance tomograph costing approximately seven million Euros and weighing 35 tonnes was delivered to its new location, the Experimental and Clinical Research Center (ECRC) of the Max Delbrück Center (MDC) for Molecular Medicine in Berlin-Buch on 11th September. In contrast to the 1.5 and 3 tesla devices which have largely been the norm to date, its higher magnetic field will provide sharper images and better insights into the smallest structures of the human body. The aim is to detect the risk or commencement of an illness at a very early stage in heart, brain and cancer research.

Above all, heart research by magnetic resonance tomography is viewed as very difficult. As such, a demanding task will be waiting for PTB scientists from January 2009, when the device has been fully installed: as the partner dealing with physics and technical issues in the joint project, they are responsible for making the unique potential of this tomograph useful for applications in clinics.

The PTB will, moreover, find the ideal conditions to advance its work on patient safety in high-field tomographs and on the development of new concepts in MRT imaging. The other partners in the project, besides the Max Delbrück Center and the PTB, are Siemens, the constructors of the 7 tesla device, and the Charité hospital. The new ultra-high-field MRT equipment of the ECRC has been completed with a 9.4 tesla small animal MRT of the Bruker company which was supplied three weeks ago.

The Press Release of the Max Delbrück Center
More information on the PTB website
Dr. Bernd Ittermann,
PTB-Department 8.1 Medical Measuring Techniques,
Phone +4930 3481 7318

Erika Schow | alfa
Further information:

More articles from Medical Engineering:

nachricht Gentle sensors for diagnosing brain disorders
29.09.2016 | King Abdullah University of Science and Technology

nachricht New imaging technique in Alzheimer’s disease - opens up possibilities for new drug development
28.09.2016 | Lund University

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>