Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Digital imaging software to create a 'Google Earth' view of the bladder

17.05.2011
Bladder cancer is the fourth-most-common cancer in men and one of the most expensive cancers to treat from diagnosis to death.

After initial diagnosis and surgery, patients must return to the urologist at least yearly for a costly, time-consuming and uncomfortable bladder scan. Tumors recur in more than half of patients.

Researchers at the University of Washington are proposing a more automated approach that could be cheaper, more comfortable and more convenient for both doctors and patients. Their system would use the UW's ultrathin laser endoscope, which is like a thin piece of cooked spaghetti, in combination with software that stitches together images from the scope's path to create a full, 3-D panorama of the bladder interior.

The semi-automated scan could be done by a nurse or technician. Resulting images could be reviewed by a urologist at a later time, potentially in another city or country.

"This is trying to bring endoscopy to a more digital, modern age," said co-author Eric Seibel, a UW research associate professor of mechanical engineering. "In the current model a very highly trained person has to do all the manual controls. There's no electronic record, no longitudinal studies, no remote diagnosis and you can't send records anywhere."

The research is being presented today in Washington, D.C., at the annual meeting of the American Urological Association.

Currently, urologists conduct bladder exams using an endoscope that's manipulated around the bladder during the roughly 5 minute scan. Because a specialist is required, some patients have to travel long distances for appointments.

Unlike ultrasounds, X-rays and CT scans, endoscopies are only performed by medical doctors. Often no records exist beyond the doctor's notes.

The UW software checks that no part of the organ was missed, so a nurse or technician could administer the procedure – especially using a small scope that doesn't require anesthesia.

"There's a potential with this technology to semi-automate or fully automate the examination," said Dr. Michael Porter, a UW assistant professor of urology. "It's a few years down the road, at least, but the potential is there."

The current user interface projects the reconstructed organ onto a spherical ball or onto a flat map. The resulting mosaic matches the images to a single pixel of accuracy. Ultimately, the digital display would incorporate all the original frames, so a doctor could zoom in on an area of interest and observe from all angles at the highest resolution.

"Essentially, I want to give urologists a Google Earth view of the bladder," said co-author Timothy Soper, a UW research scientist in mechanical engineering. "As you move the mouse over the 3-D surface it would show the individual frame showing exactly where that image came from. So you could have the forest and the trees."

Reviewing the resulting panoramic image would likely require less of the urologist's time than performing a manual inspection.

At the meeting, Porter will present the software and the user interface, as well as preliminary results of 3-D panoramas from a commercially available endoscope inserted into a painted glass bulb, a stained pig bladder and a normal human bladder.

The UW software could be used with any endoscope, though the team sees particular benefit in combining it with its flexible endoscope. The UW scope is just 1.5 mm wide, about half the size of its smallest competitor (most bladder scopes are as thick as a pencil, while the UW's is like a strand of angel hair pasta with a tip the size of a grain of rice). It captures finer-grained images than existing flexible endoscopes. The tiny size is possible because of a novel design that swings a single optical fiber back and forth to scan a color image pixel by pixel.

The tip of the UW device will contain a steering mechanism that directs the movement of the scope during the internal exam.

Another advantage of using the UW scope in urology is that it can detect newly approved diagnostic cancer-cell markers that are best seen using low-power lasers, which are already used in the UW device.

Until recently a Japanese company held exclusive rights to develop medical applications for the UW scope. That license expired last month, and UW researchers are now exploring their tool's use for urology. They are waiting for U.S. Food and Drug Administration safety clearance to test the scope for human bladder scans and pursuing funding options. The next step will ask urologists to compare their experience of performing a diagnosis from a live video scan of a human bladder with the 3-D digital recreation.

The research was funded by a grant from the Wallace H. Coulter Foundation in the UW's Department of Bioengineering, and by the UW's Center for Commercialization.

For more information, contact Seibel at 206-616-1486 or eseibel@uw.edu, Soper at 206-616-1420 or tsoper@uw.edu and Porter at mporter@uw.edu.

See also: "Camera in a pill offers cheaper, easier window on your insides"
UW News | Jan. 24, 2008
http://www.washington.edu/news/archive/uweek/39243
See also: "New approaches to bladder-surveillance endoscopy"
SPIE Newsroom | April 2011
http://spie.org/x47555.xml?pf=true&ArticleID=x47555

Hannah Hickey | EurekAlert!
Further information:
http://www.uw.edu

More articles from Medical Engineering:

nachricht Rutgers researchers develop automated robotic device for faster blood testing
14.06.2018 | Rutgers University

nachricht Speech comprehension with a cochlear implant
04.06.2018 | Universität zu Lübeck

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

What are the effects of coral reef marine protected areas?

21.06.2018 | Life Sciences

The Janus head of the South Asian monsoon

21.06.2018 | Earth Sciences

The world's tiniest first responders

21.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>