Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Digital imaging software to create a 'Google Earth' view of the bladder

17.05.2011
Bladder cancer is the fourth-most-common cancer in men and one of the most expensive cancers to treat from diagnosis to death.

After initial diagnosis and surgery, patients must return to the urologist at least yearly for a costly, time-consuming and uncomfortable bladder scan. Tumors recur in more than half of patients.

Researchers at the University of Washington are proposing a more automated approach that could be cheaper, more comfortable and more convenient for both doctors and patients. Their system would use the UW's ultrathin laser endoscope, which is like a thin piece of cooked spaghetti, in combination with software that stitches together images from the scope's path to create a full, 3-D panorama of the bladder interior.

The semi-automated scan could be done by a nurse or technician. Resulting images could be reviewed by a urologist at a later time, potentially in another city or country.

"This is trying to bring endoscopy to a more digital, modern age," said co-author Eric Seibel, a UW research associate professor of mechanical engineering. "In the current model a very highly trained person has to do all the manual controls. There's no electronic record, no longitudinal studies, no remote diagnosis and you can't send records anywhere."

The research is being presented today in Washington, D.C., at the annual meeting of the American Urological Association.

Currently, urologists conduct bladder exams using an endoscope that's manipulated around the bladder during the roughly 5 minute scan. Because a specialist is required, some patients have to travel long distances for appointments.

Unlike ultrasounds, X-rays and CT scans, endoscopies are only performed by medical doctors. Often no records exist beyond the doctor's notes.

The UW software checks that no part of the organ was missed, so a nurse or technician could administer the procedure – especially using a small scope that doesn't require anesthesia.

"There's a potential with this technology to semi-automate or fully automate the examination," said Dr. Michael Porter, a UW assistant professor of urology. "It's a few years down the road, at least, but the potential is there."

The current user interface projects the reconstructed organ onto a spherical ball or onto a flat map. The resulting mosaic matches the images to a single pixel of accuracy. Ultimately, the digital display would incorporate all the original frames, so a doctor could zoom in on an area of interest and observe from all angles at the highest resolution.

"Essentially, I want to give urologists a Google Earth view of the bladder," said co-author Timothy Soper, a UW research scientist in mechanical engineering. "As you move the mouse over the 3-D surface it would show the individual frame showing exactly where that image came from. So you could have the forest and the trees."

Reviewing the resulting panoramic image would likely require less of the urologist's time than performing a manual inspection.

At the meeting, Porter will present the software and the user interface, as well as preliminary results of 3-D panoramas from a commercially available endoscope inserted into a painted glass bulb, a stained pig bladder and a normal human bladder.

The UW software could be used with any endoscope, though the team sees particular benefit in combining it with its flexible endoscope. The UW scope is just 1.5 mm wide, about half the size of its smallest competitor (most bladder scopes are as thick as a pencil, while the UW's is like a strand of angel hair pasta with a tip the size of a grain of rice). It captures finer-grained images than existing flexible endoscopes. The tiny size is possible because of a novel design that swings a single optical fiber back and forth to scan a color image pixel by pixel.

The tip of the UW device will contain a steering mechanism that directs the movement of the scope during the internal exam.

Another advantage of using the UW scope in urology is that it can detect newly approved diagnostic cancer-cell markers that are best seen using low-power lasers, which are already used in the UW device.

Until recently a Japanese company held exclusive rights to develop medical applications for the UW scope. That license expired last month, and UW researchers are now exploring their tool's use for urology. They are waiting for U.S. Food and Drug Administration safety clearance to test the scope for human bladder scans and pursuing funding options. The next step will ask urologists to compare their experience of performing a diagnosis from a live video scan of a human bladder with the 3-D digital recreation.

The research was funded by a grant from the Wallace H. Coulter Foundation in the UW's Department of Bioengineering, and by the UW's Center for Commercialization.

For more information, contact Seibel at 206-616-1486 or eseibel@uw.edu, Soper at 206-616-1420 or tsoper@uw.edu and Porter at mporter@uw.edu.

See also: "Camera in a pill offers cheaper, easier window on your insides"
UW News | Jan. 24, 2008
http://www.washington.edu/news/archive/uweek/39243
See also: "New approaches to bladder-surveillance endoscopy"
SPIE Newsroom | April 2011
http://spie.org/x47555.xml?pf=true&ArticleID=x47555

Hannah Hickey | EurekAlert!
Further information:
http://www.uw.edu

More articles from Medical Engineering:

nachricht New technique makes brain scans better
22.06.2017 | Massachusetts Institute of Technology

nachricht New technology enables effective simultaneous testing for multiple blood-borne pathogens
13.06.2017 | Elsevier

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>