Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Digital imaging software to create a 'Google Earth' view of the bladder

17.05.2011
Bladder cancer is the fourth-most-common cancer in men and one of the most expensive cancers to treat from diagnosis to death.

After initial diagnosis and surgery, patients must return to the urologist at least yearly for a costly, time-consuming and uncomfortable bladder scan. Tumors recur in more than half of patients.

Researchers at the University of Washington are proposing a more automated approach that could be cheaper, more comfortable and more convenient for both doctors and patients. Their system would use the UW's ultrathin laser endoscope, which is like a thin piece of cooked spaghetti, in combination with software that stitches together images from the scope's path to create a full, 3-D panorama of the bladder interior.

The semi-automated scan could be done by a nurse or technician. Resulting images could be reviewed by a urologist at a later time, potentially in another city or country.

"This is trying to bring endoscopy to a more digital, modern age," said co-author Eric Seibel, a UW research associate professor of mechanical engineering. "In the current model a very highly trained person has to do all the manual controls. There's no electronic record, no longitudinal studies, no remote diagnosis and you can't send records anywhere."

The research is being presented today in Washington, D.C., at the annual meeting of the American Urological Association.

Currently, urologists conduct bladder exams using an endoscope that's manipulated around the bladder during the roughly 5 minute scan. Because a specialist is required, some patients have to travel long distances for appointments.

Unlike ultrasounds, X-rays and CT scans, endoscopies are only performed by medical doctors. Often no records exist beyond the doctor's notes.

The UW software checks that no part of the organ was missed, so a nurse or technician could administer the procedure – especially using a small scope that doesn't require anesthesia.

"There's a potential with this technology to semi-automate or fully automate the examination," said Dr. Michael Porter, a UW assistant professor of urology. "It's a few years down the road, at least, but the potential is there."

The current user interface projects the reconstructed organ onto a spherical ball or onto a flat map. The resulting mosaic matches the images to a single pixel of accuracy. Ultimately, the digital display would incorporate all the original frames, so a doctor could zoom in on an area of interest and observe from all angles at the highest resolution.

"Essentially, I want to give urologists a Google Earth view of the bladder," said co-author Timothy Soper, a UW research scientist in mechanical engineering. "As you move the mouse over the 3-D surface it would show the individual frame showing exactly where that image came from. So you could have the forest and the trees."

Reviewing the resulting panoramic image would likely require less of the urologist's time than performing a manual inspection.

At the meeting, Porter will present the software and the user interface, as well as preliminary results of 3-D panoramas from a commercially available endoscope inserted into a painted glass bulb, a stained pig bladder and a normal human bladder.

The UW software could be used with any endoscope, though the team sees particular benefit in combining it with its flexible endoscope. The UW scope is just 1.5 mm wide, about half the size of its smallest competitor (most bladder scopes are as thick as a pencil, while the UW's is like a strand of angel hair pasta with a tip the size of a grain of rice). It captures finer-grained images than existing flexible endoscopes. The tiny size is possible because of a novel design that swings a single optical fiber back and forth to scan a color image pixel by pixel.

The tip of the UW device will contain a steering mechanism that directs the movement of the scope during the internal exam.

Another advantage of using the UW scope in urology is that it can detect newly approved diagnostic cancer-cell markers that are best seen using low-power lasers, which are already used in the UW device.

Until recently a Japanese company held exclusive rights to develop medical applications for the UW scope. That license expired last month, and UW researchers are now exploring their tool's use for urology. They are waiting for U.S. Food and Drug Administration safety clearance to test the scope for human bladder scans and pursuing funding options. The next step will ask urologists to compare their experience of performing a diagnosis from a live video scan of a human bladder with the 3-D digital recreation.

The research was funded by a grant from the Wallace H. Coulter Foundation in the UW's Department of Bioengineering, and by the UW's Center for Commercialization.

For more information, contact Seibel at 206-616-1486 or eseibel@uw.edu, Soper at 206-616-1420 or tsoper@uw.edu and Porter at mporter@uw.edu.

See also: "Camera in a pill offers cheaper, easier window on your insides"
UW News | Jan. 24, 2008
http://www.washington.edu/news/archive/uweek/39243
See also: "New approaches to bladder-surveillance endoscopy"
SPIE Newsroom | April 2011
http://spie.org/x47555.xml?pf=true&ArticleID=x47555

Hannah Hickey | EurekAlert!
Further information:
http://www.uw.edu

More articles from Medical Engineering:

nachricht 3-D visualization of the pancreas -- new tool in diabetes research
15.03.2017 | Umea University

nachricht New PET radiotracer identifies inflammation in life-threatening atherosclerosis
02.03.2017 | Society of Nuclear Medicine

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>