Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Controlling movement with light


MIT neuroscientists inhibit muscle contractions by shining light on spinal cord neurons.

For the first time, MIT neuroscientists have shown they can control muscle movement by applying optogenetics — a technique that allows scientists to control neurons’ electrical impulses with light — to the spinal cords of animals that are awake and alert.  

Illustration: Jose-Luis Olivares/MIT

Led by MIT Institute Professor Emilio Bizzi, the researchers studied mice in which a light-sensitive protein that promotes neural activity was inserted into a subset of spinal neurons. When the researchers shone blue light on the animals’ spinal cords, their hind legs were completely but reversibly immobilized. The findings, described in the June 25 issue of PLoS One, offer a new approach to studying the complex spinal circuits that coordinate movement and sensory processing, the researchers say.

In this study, Bizzi and Vittorio Caggiano, a postdoc at MIT’s McGovern Institute for Brain Research, used optogenetics to explore the function of inhibitory interneurons, which form circuits with many other neurons in the spinal cord. These circuits execute commands from the brain, with additional input from sensory information from the limbs.

Previously, neuroscientists have used electrical stimulation or pharmacological intervention to control neurons’ activity and try to tease out their function. Those approaches have revealed a great deal of information about spinal control, but they do not offer precise enough control to study specific subsets of neurons.

Optogenetics, on the other hand, allows scientists to control specific types of neurons by genetically programming them to express light-sensitive proteins. These proteins, called opsins, act as ion channels or pumps that regulate neurons’ electrical activity. Some opsins suppress activity when light shines on them, while others stimulate it.

“With optogenetics, you are attacking a system of cells that have certain characteristics similar to each other. It’s a big shift in terms of our ability to understand how the system works,” says Bizzi, who is a member of MIT’s McGovern Institute.

Muscle control

Inhibitory neurons in the spinal cord suppress muscle contractions, which is critical for maintaining balance and for coordinating movement. For example, when you raise an apple to your mouth, the biceps contract while the triceps relax. Inhibitory neurons are also thought to be involved in the state of muscle inhibition that occurs during the rapid eye movement (REM) stage of sleep.

To study the function of inhibitory neurons in more detail, the researchers used mice developed by Guoping Feng, the Poitras Professor of Neuroscience at MIT, in which all inhibitory spinal neurons were engineered to express an opsin called channelrhodopsin 2. This opsin stimulates neural activity when exposed to blue light. They then shone light at different points along the spine to observe the effects of neuron activation.

When inhibitory neurons in a small section of the thoracic spine were activated in freely moving mice, all hind-leg movement ceased. This suggests that inhibitory neurons in the thoracic spine relay the inhibition all the way to the end of the spine, Caggiano says. The researchers also found that activating inhibitory neurons had no effect on the transmission of sensory information from the limbs to the brain, or on normal reflexes.

“The spinal location where we found this complete suppression was completely new,” Caggiano says. “It has not been shown by any other scientists that there is this front-to-back suppression that affects only motor behavior without affecting sensory behavior.”

“It’s a compelling use of optogenetics that raises a lot of very interesting questions,” says Simon Giszter, a professor of neurobiology and anatomy at Drexel University who was not part of the research team. Among those questions is whether this mechanism behaves as a global “kill switch,” or if the inhibitory neurons form modules that allow for more selective suppression of movement patterns.

Now that they have demonstrated the usefulness of optogenetics for this type of study, the MIT team hopes to explore the roles of other types of spinal cord neurons. They also plan to investigate how input from the brain influences these spinal circuits.

“There’s huge interest in trying to extend these studies and dissect these circuits because we tackled only the inhibitory system in a very global way,” Caggiano says. “Further studies will highlight the contribution of single populations of neurons in the spinal cord for the control of limbs and control of movement.”

The research was funded by the Human Frontier Science Program and the National Science Foundation. Mriganka Sur, the Paul E. and Lilah Newton Professor of Neuroscience at MIT, is also an author of the paper.

Sarah McDonnell | Eurek Alert!

Further reports about: Controlling MIT Massachusetts activity function inhibitory limbs movement neurons optogenetics sensory spinal spine suppression

More articles from Medical Engineering:

nachricht Bern’s surgical procedure for brain tumours a world leader
03.11.2015 | Universitätsspital Bern

nachricht Siemens Healthcare introduces first Twin Robotic X-Ray system
29.10.2015 | Siemens AG

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Innovative Photovoltaics – from the Lab to the Façade

Fraunhofer ISE Demonstrates New Cell and Module Technologies on its Outer Building Façade

The Fraunhofer Institute for Solar Energy Systems ISE has installed 70 photovoltaic modules on the outer façade of one of its lab buildings. The modules were...

Im Focus: Lactate for Brain Energy

Nerve cells cover their high energy demand with glucose and lactate. Scientists of the University of Zurich now provide new support for this. They show for the first time in the intact mouse brain evidence for an exchange of lactate between different brain cells. With this study they were able to confirm a 20-year old hypothesis.

In comparison to other organs, the human brain has the highest energy requirements. The supply of energy for nerve cells and the particular role of lactic acid...

Im Focus: Laser process simulation available as app for first time

In laser material processing, the simulation of processes has made great strides over the past few years. Today, the software can predict relatively well what will happen on the workpiece. Unfortunately, it is also highly complex and requires a lot of computing time. Thanks to clever simplification, experts from Fraunhofer ILT are now able to offer the first-ever simulation software that calculates processes in real time and also runs on tablet computers and smartphones. The fast software enables users to do without expensive experiments and to find optimum process parameters even more effectively.

Before now, the reliable simulation of laser processes was a job for experts. Armed with sophisticated software packages and after many hours on computer...

Im Focus: Quantum Simulation: A Better Understanding of Magnetism

Heidelberg physicists use ultracold atoms to imitate the behaviour of electrons in a solid

Researchers at Heidelberg University have devised a new way to study the phenomenon of magnetism. Using ultracold atoms at near absolute zero, they prepared a...

Im Focus: Climate Change: Warm water is mixing up life in the Arctic

AWI researchers’ unique 15-year observation series reveals how sensitive marine ecosystems in polar regions are to change

The warming of arctic waters in the wake of climate change is likely to produce radical changes in the marine habitats of the High North. This is indicated by...

All Focus news of the innovation-report >>>



Event News

Fraunhofer’s Urban Futures Conference: 2 days in the city of the future

25.11.2015 | Event News

Gluten oder nicht Gluten? Überempfindlichkeit auf Weizen kann unterschiedliche Ursachen haben

17.11.2015 | Event News

Art Collection Deutsche Börse zeigt Ausstellung „Traces of Disorder“

21.10.2015 | Event News

Latest News

Harnessing a peptide holds promise for increasing crop yields without more fertilizer

25.11.2015 | Agricultural and Forestry Science

Earth's magnetic field is not about to flip

25.11.2015 | Earth Sciences

Tracking down the 'missing' carbon from the Martian atmosphere

25.11.2015 | Physics and Astronomy

More VideoLinks >>>