Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Compact microscope a marvel

05.08.2010
Matches performance of expensive lab gear in diagnosing TB

A compact microscope invented at Rice University is proving its potential to impact global health.

In a paper published online today in the journal PLoS ONE, Rice alumnus Andrew Miller and co-authors show that his portable, battery-operated fluorescence microscope, which costs $240, stacks up nicely against devices that retail for as much as $40,000 in diagnosing signs of tuberculosis.

Miller and colleagues at The Methodist Hospital Research Institute (TMHRI) analyzed samples from 19 patients suspected of having TB, an infectious disease that usually attacks the lungs and can be fatal if not treated. His instrument, called the Global Focus microscope, performed just as well as the lab's reference-standard fluorescence microscope. The team reported similar findings were obtained in 98.4 percent of the samples tested.

Miller created the 2.5-pound microscope as his senior design project last year, working with faculty in Rice 360¢ª: Institute for Global Health Technologies. The goal was to make an inexpensive, portable and highly capable microscope that could be used in clinics in developing countries that have limited access to lab equipment and may lack electricity.

The microscope was built with off-the-shelf parts encased in a rugged plastic shell Miller created with a 3-D printer at Rice's Oshman Engineering Design Kitchen (OEDK). Light to power the 1,000-times magnification microscope comes from a top-mounted LED flashlight.

The Global Focus microscope won this year's Hershel M. Rich Invention Award, which is presented annually by Rice Engineering Alumni to a Rice faculty member or student who has developed an original invention. It was the first undergraduate project to win the award.

Miller graduated from Rice in 2009 with a degree in bioengineering and works full time as a medical device designer for Thoratec, a San Francisco company that makes ventricular assist devices. Part time, he continues working to commercialize the microscope in a way that will ensure its cost remains low for users in developing countries. He has also replaced the microscope's plastic casing with aluminum for better stability.

Miller and Rice have contracted with a medical device consultant, 3rd Stone Design, to produce 20 microscopes that will be ready for field testing next month.

"The World Health Organization estimates that 1.3 million people died from tuberculosis in 2008," said Rebecca Richards-Kortum, Rice's Stanley C. Moore Professor of Bioengineering and the founding director of Rice 360¡Æ. "Andy's microscope, which is portable, durable and inexpensive, could be used to diagnose tuberculosis in community or rural health centers with limited infrastructure in the developing world, promoting early detection and successful treatment of the disease."

The trial used TB smear samples from Tehran, Iran. Ahmad Bahrmand, former TB laboratory director of the Pasteur Institute of Iran, brought sputum smear samples from the infected patients when he came to work for Edward Graviss, director of the TMHRI Molecular Tuberculosis Laboratory.

Four days of blind testing of 63 smear samples, including control slides, confirmed the Global Focus microscope was every bit as capable as the lab's more sophisticated instrument in identifying positive smear specimens.

"This is hugely significant as a point-of-care tool clinicians can use for tuberculosis patients, whether they're in Asia or Africa or even in West Texas," Graviss said. "The first identification of TB is usually made with a smear, and it will be good to know that in the field instead of having to wait three or four days to get the smear to a lab.

"The idea was to compare a field-grade type microscope with what we see in a standard TB laboratory, such as what we have at Methodist," he said. "When we compared the results between the two microscopes, there was no significant difference. The quality is there, and you're not going to miss anything by using one of these point-of-care microscopes."

A new team of Rice students is developing software to help untrained clinicians to diagnose tuberculosis in the field through image processing on a smart phone, perhaps as an iPhone app.

Co-authors of the paper include Rice alum Gregory Davis; Maria Oden, professor in the practice of engineering education at Rice and director of the OEDK; Mark Pierce, a faculty fellow in bioengineering at Rice; Randall Olsen, a Methodist Hospital pathologist and TMHRI scientist; and Mohamad Razavi, Abolfazl Fateh, Morteza Ghazanfari, Farid Abdolrahimi, Shahin Pourazar and Fatemeh Sakhaee of the Pasteur Institute of Iran.

The program was supported by a grant from the Howard Hughes Medical Institute through the Precollege and Undergraduate Science Education Program.

Read the paper here: http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0011890

David Ruth | EurekAlert!
Further information:
http://www.rice.edu

More articles from Medical Engineering:

nachricht Visualizing gene expression with MRI
23.12.2016 | California Institute of Technology

nachricht Illuminating cancer: Researchers invent a pH threshold sensor to improve cancer surgery
21.12.2016 | UT Southwestern Medical Center

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>