Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Compact microscope a marvel

05.08.2010
Matches performance of expensive lab gear in diagnosing TB

A compact microscope invented at Rice University is proving its potential to impact global health.

In a paper published online today in the journal PLoS ONE, Rice alumnus Andrew Miller and co-authors show that his portable, battery-operated fluorescence microscope, which costs $240, stacks up nicely against devices that retail for as much as $40,000 in diagnosing signs of tuberculosis.

Miller and colleagues at The Methodist Hospital Research Institute (TMHRI) analyzed samples from 19 patients suspected of having TB, an infectious disease that usually attacks the lungs and can be fatal if not treated. His instrument, called the Global Focus microscope, performed just as well as the lab's reference-standard fluorescence microscope. The team reported similar findings were obtained in 98.4 percent of the samples tested.

Miller created the 2.5-pound microscope as his senior design project last year, working with faculty in Rice 360¢ª: Institute for Global Health Technologies. The goal was to make an inexpensive, portable and highly capable microscope that could be used in clinics in developing countries that have limited access to lab equipment and may lack electricity.

The microscope was built with off-the-shelf parts encased in a rugged plastic shell Miller created with a 3-D printer at Rice's Oshman Engineering Design Kitchen (OEDK). Light to power the 1,000-times magnification microscope comes from a top-mounted LED flashlight.

The Global Focus microscope won this year's Hershel M. Rich Invention Award, which is presented annually by Rice Engineering Alumni to a Rice faculty member or student who has developed an original invention. It was the first undergraduate project to win the award.

Miller graduated from Rice in 2009 with a degree in bioengineering and works full time as a medical device designer for Thoratec, a San Francisco company that makes ventricular assist devices. Part time, he continues working to commercialize the microscope in a way that will ensure its cost remains low for users in developing countries. He has also replaced the microscope's plastic casing with aluminum for better stability.

Miller and Rice have contracted with a medical device consultant, 3rd Stone Design, to produce 20 microscopes that will be ready for field testing next month.

"The World Health Organization estimates that 1.3 million people died from tuberculosis in 2008," said Rebecca Richards-Kortum, Rice's Stanley C. Moore Professor of Bioengineering and the founding director of Rice 360¡Æ. "Andy's microscope, which is portable, durable and inexpensive, could be used to diagnose tuberculosis in community or rural health centers with limited infrastructure in the developing world, promoting early detection and successful treatment of the disease."

The trial used TB smear samples from Tehran, Iran. Ahmad Bahrmand, former TB laboratory director of the Pasteur Institute of Iran, brought sputum smear samples from the infected patients when he came to work for Edward Graviss, director of the TMHRI Molecular Tuberculosis Laboratory.

Four days of blind testing of 63 smear samples, including control slides, confirmed the Global Focus microscope was every bit as capable as the lab's more sophisticated instrument in identifying positive smear specimens.

"This is hugely significant as a point-of-care tool clinicians can use for tuberculosis patients, whether they're in Asia or Africa or even in West Texas," Graviss said. "The first identification of TB is usually made with a smear, and it will be good to know that in the field instead of having to wait three or four days to get the smear to a lab.

"The idea was to compare a field-grade type microscope with what we see in a standard TB laboratory, such as what we have at Methodist," he said. "When we compared the results between the two microscopes, there was no significant difference. The quality is there, and you're not going to miss anything by using one of these point-of-care microscopes."

A new team of Rice students is developing software to help untrained clinicians to diagnose tuberculosis in the field through image processing on a smart phone, perhaps as an iPhone app.

Co-authors of the paper include Rice alum Gregory Davis; Maria Oden, professor in the practice of engineering education at Rice and director of the OEDK; Mark Pierce, a faculty fellow in bioengineering at Rice; Randall Olsen, a Methodist Hospital pathologist and TMHRI scientist; and Mohamad Razavi, Abolfazl Fateh, Morteza Ghazanfari, Farid Abdolrahimi, Shahin Pourazar and Fatemeh Sakhaee of the Pasteur Institute of Iran.

The program was supported by a grant from the Howard Hughes Medical Institute through the Precollege and Undergraduate Science Education Program.

Read the paper here: http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0011890

David Ruth | EurekAlert!
Further information:
http://www.rice.edu

More articles from Medical Engineering:

nachricht 3-D visualization of the pancreas -- new tool in diabetes research
15.03.2017 | Umea University

nachricht New PET radiotracer identifies inflammation in life-threatening atherosclerosis
02.03.2017 | Society of Nuclear Medicine

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>