Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Combined imaging technologies may better identify cancerous breast lesions

09.11.2010
By combining optical and x-ray imaging, radiologists may be better able to distinguish cancer from benign lesions in the breast, according to a new study published in the online edition and January issue of Radiology.

Researchers at Martinos Center for Biomedical Imaging at Massachusetts General Hospital in Boston helped develop a combined optical/x-ray imaging system capable of obtaining both structural and functional information of the breast.

The two technologies used were digital breast tomosynthesis (DBT), a three-dimensional application of digital mammography, and diffuse optical tomography (DOT), which measures levels of hemoglobin concentration, oxygen saturation and other cellular characteristics, based on how light from a near-infrared laser is absorbed and scattered within tissue.

"By co-registering optical and x-ray data, radiologists are able to map suspicious findings and analyze the functional characteristics of those areas," said lead researcher Qianqian Fang, Ph.D., a radiology instructor at Harvard Medical School.

In the study, combined DBT and DOT was performed on 189 breasts from 125 women with an average age of 56 years. To perform the procedure, an optical source and detector probes were attached to a DBT unit and, with the breast compressed, optical data was acquired. The optical probes were then removed without altering the breast compression and a DBT scan was performed.

"We are very excited about adding optical imaging to DBT, because it is low-cost, safe, noninvasive and fast," Dr. Fang said.

Of the 189 imaging studies, 138 were negative, and 51 showed evidence of lesions. As determined by breast biopsy, 26 lesions of the 51 lesions were malignant, and 25 were benign.

In the 26 malignant tumors, total hemoglobin concentration (HbT) was significantly greater than in the normal glandular tissue of the same breast. Solid benign lesions and cysts had significantly lower HbT contrast compared to the malignant lesions.

"By providing additional differentiation of malignant and benign lesions, combined optical and x-ray imaging could potentially reduce unnecessary biopsies," Dr. Fang said.

In the study, oxygen saturation levels were significantly lower in cysts compared to those in malignant and solid benign lesions and glandular breast tissue.

"Although cysts are easy to diagnose using ultrasound, distinguishing cysts from malignant or benign lesions during a mammogram would save women the anxiety and costs associated with a second procedure," Dr. Fang said. "We are hopeful that this combined system may help improve the efficiency and diagnostic accuracy of breast screening."

The study is part of an ongoing research effort to improve breast cancer diagnosis led by Daniel B. Kopans, M.D., and David Boas, Ph.D., and funded by the National Institutes of Health.

"Combined Optical and X-ray Tomosynthesis Breast Imaging." Collaborating with Dr. Fang were Juliette Selb, Ph.D., Stefan A. Carp, Ph.D., Greg Boverman, Ph.D., Eric L. Miller, Ph.D., Dana H. Brooks, Ph.D., Richard H. Moore, B.S., Daniel B. Kopans, M.D., and David A. Boas, Ph.D.

Radiology is edited by Herbert Y. Kressel, M.D., Harvard Medical School, Boston, Mass., and owned and published by the Radiological Society of North America, Inc. (http://radiology.rsna.org/)

RSNA is an association of more than 46,000 radiologists, radiation oncologists, medical physicists and related scientists committed to excellence in patient care through education and research. The Society is based in Oak Brook, Ill. (RSNA.org)

For patient-friendly information on breast imaging, visit RadiologyInfo.org.

Linda Brooks | EurekAlert!
Further information:
http://www.rsna.org

More articles from Medical Engineering:

nachricht PET identifies which prostate cancer patients can benefit from salvage radiation treatment
05.12.2017 | Society of Nuclear Medicine and Molecular Imaging

nachricht Designing a golden nanopill
01.12.2017 | University of Texas at Austin, Texas Advanced Computing Center

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

Blockchain is becoming more important in the energy market

05.12.2017 | Event News

 
Latest News

New research identifies how 3-D printed metals can be both strong and ductile

11.12.2017 | Physics and Astronomy

Scientists channel graphene to understand filtration and ion transport into cells

11.12.2017 | Materials Sciences

What makes corals sick?

11.12.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>