Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Combined imaging technologies may better identify cancerous breast lesions

09.11.2010
By combining optical and x-ray imaging, radiologists may be better able to distinguish cancer from benign lesions in the breast, according to a new study published in the online edition and January issue of Radiology.

Researchers at Martinos Center for Biomedical Imaging at Massachusetts General Hospital in Boston helped develop a combined optical/x-ray imaging system capable of obtaining both structural and functional information of the breast.

The two technologies used were digital breast tomosynthesis (DBT), a three-dimensional application of digital mammography, and diffuse optical tomography (DOT), which measures levels of hemoglobin concentration, oxygen saturation and other cellular characteristics, based on how light from a near-infrared laser is absorbed and scattered within tissue.

"By co-registering optical and x-ray data, radiologists are able to map suspicious findings and analyze the functional characteristics of those areas," said lead researcher Qianqian Fang, Ph.D., a radiology instructor at Harvard Medical School.

In the study, combined DBT and DOT was performed on 189 breasts from 125 women with an average age of 56 years. To perform the procedure, an optical source and detector probes were attached to a DBT unit and, with the breast compressed, optical data was acquired. The optical probes were then removed without altering the breast compression and a DBT scan was performed.

"We are very excited about adding optical imaging to DBT, because it is low-cost, safe, noninvasive and fast," Dr. Fang said.

Of the 189 imaging studies, 138 were negative, and 51 showed evidence of lesions. As determined by breast biopsy, 26 lesions of the 51 lesions were malignant, and 25 were benign.

In the 26 malignant tumors, total hemoglobin concentration (HbT) was significantly greater than in the normal glandular tissue of the same breast. Solid benign lesions and cysts had significantly lower HbT contrast compared to the malignant lesions.

"By providing additional differentiation of malignant and benign lesions, combined optical and x-ray imaging could potentially reduce unnecessary biopsies," Dr. Fang said.

In the study, oxygen saturation levels were significantly lower in cysts compared to those in malignant and solid benign lesions and glandular breast tissue.

"Although cysts are easy to diagnose using ultrasound, distinguishing cysts from malignant or benign lesions during a mammogram would save women the anxiety and costs associated with a second procedure," Dr. Fang said. "We are hopeful that this combined system may help improve the efficiency and diagnostic accuracy of breast screening."

The study is part of an ongoing research effort to improve breast cancer diagnosis led by Daniel B. Kopans, M.D., and David Boas, Ph.D., and funded by the National Institutes of Health.

"Combined Optical and X-ray Tomosynthesis Breast Imaging." Collaborating with Dr. Fang were Juliette Selb, Ph.D., Stefan A. Carp, Ph.D., Greg Boverman, Ph.D., Eric L. Miller, Ph.D., Dana H. Brooks, Ph.D., Richard H. Moore, B.S., Daniel B. Kopans, M.D., and David A. Boas, Ph.D.

Radiology is edited by Herbert Y. Kressel, M.D., Harvard Medical School, Boston, Mass., and owned and published by the Radiological Society of North America, Inc. (http://radiology.rsna.org/)

RSNA is an association of more than 46,000 radiologists, radiation oncologists, medical physicists and related scientists committed to excellence in patient care through education and research. The Society is based in Oak Brook, Ill. (RSNA.org)

For patient-friendly information on breast imaging, visit RadiologyInfo.org.

Linda Brooks | EurekAlert!
Further information:
http://www.rsna.org

More articles from Medical Engineering:

nachricht Novel breast tomosynthesis technique reduces screening recall rate
21.02.2017 | Radiological Society of North America

nachricht Biocompatible 3-D tracking system has potential to improve robot-assisted surgery
17.02.2017 | Children's National Health System

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>