Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Coatings monitor the blood burble and increase the longevity of prosthetic heart valves

13.07.2011
Prosthetic heart valves usually consist of carbon. During service, blood components are deposited on their surfaces and the risk of a thrombosis increases. The function of the heart valves is also limited by the deposits. For this reason, follow-up heart surgery is often unavoidable.

In an international joint project, scientists are now testing prosthetic pumping systems, in which coatings increase the longevity of heart valves. At the same time, they are able to monitor the heart valve. The project "HeartSen" is led by the INM – Leibniz Institute for New Materials.

The prosthetic heart valves are tested in a pumping system outside the human body. In these systems, human blood or blood substitutes are running around in circles. The two overlapping coatings on the heart valves fulfill various purposes: "At first, we apply a magnetic layer", says Cenk Aktas, the head of the program division "CVD/Biosurfaces" at INM – Leibniz Institute for New Materials. "A sensor which is outside the heart valve transmits the signals of this magnetic layer. Depending on how well the blood flows through, we receive different signals, which give us information about the valves function", continues the project leader. The second layer works as protective layer to prevent the deposition of blood components. "By combining these two layers, we can precisely design the protective layer to optimize longevity of the heart valve ", says the materials scientist Aktas.

The prosthetic valves consist of titan. Both layers are applied one after another. Similar to hot water vapor on the pot lid, the materials precipitate on the titan valve in a very thin, uniform layer. The protective layer consists of adamantine carbon. With a thickness of 100 to 150 nm (millionths of a millimeter), the artificial system is comparable to prosthetic heart valves.

Background:
In the joint project "HeartSean", scientists from four institutions are working together: INM – Leibniz Institute for New Materials, Saarbrücken/Germany, the Pediatric Cardiology of Saarland University Hospital, Homburg/Germany, and Indian Institute of Technology Madras as well as Kocaeli University, Turkey. The project started in July 2011 under the leadership of INM. The research project comprises an overall budget of 150,000 euros and is set up for two years. "HeartSen" is part of the project "New Indigo", a cooperation between Europe and India. This cooperation stems from the Seventh Framework Programme FP7, which bundles all research-related EU initiatives together under a common roof, the initiatives playing a central role in reaching the goals of growth, competitiveness, and employment.
Contact:
Cenk Aktas
INM – Leibniz Institute for New Materials
Phone: +49 681 9300 140
E-mail: cenk.aktas@inm-gmbh.de
Further information on http://stories.newindigo.eu//
INM is focused on the research and development of materials – for today, tomorrow and the future. Chemists, physicists, biologists, materials and engineering scientists shape the work at INM. From molecule to pilot production, they follow the recurring questions: Which material properties are new, how can they be investigated and how can they be used in the future?

INM – Leibniz Institute for New Materials, situated in Saarbrücken/Germany, is an internationally leading centre for materials research. It is a scientific partner to national and international institutes and a provider of research and development for companies throughout the world. INM is an institute of the Scientific Association Gottfried Wilhelm Leibniz and employs around 190 collaborators. Its main research fields are Chemical Nanotechnology, Interface Materials, and Materials in Biology.

Dr. Carola Jung | idw
Further information:
http://www.inm-gmbh.de/
http://stories.newindigo.eu//

More articles from Medical Engineering:

nachricht Visualizing gene expression with MRI
23.12.2016 | California Institute of Technology

nachricht Illuminating cancer: Researchers invent a pH threshold sensor to improve cancer surgery
21.12.2016 | UT Southwestern Medical Center

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Tracking movement of immune cells identifies key first steps in inflammatory arthritis

23.01.2017 | Health and Medicine

Electrocatalysis can advance green transition

23.01.2017 | Physics and Astronomy

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>