Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New algorithm significantly improves imaging for full-body MRIs

05.05.2011
A new study reveals an improved algorithm that can dramatically improve how radiologists capture and interpret full-body MRIs, particularly in the abdominal region.

Motion artifacts in MRIs, such as patient movement, often appear as ghosting artifacts which may obscure clinical information says Dr. Candice Bookwalter, presenting author for the study.

"Almost every acquisition during an MR abdominal exam requires a breath hold to limit motion. For example, a routine liver exam includes at least nine breath holds. Even with fast imaging techniques, these breath holds are often long and difficult for patients, and failed breath holds are almost always identified only after image acquisition. This is particularly problematic in timed post-contrast imaging," she says.

She and her team developed the Motion Artifact Removal by Retrospective Resolution Reduction (MARs) algorithm to identify the transition between a breath hold and free breathing to allow for better retrospective reviews of the image and to reduce the need for additional imaging. Dr. Bookwalter says, "MARs detected and removed motion corrupted data automatically in our asymptomatic volunteers and patients, which improved the overall image quality."

In the study performed at the University Hospital at Case Medical Center, Case Western Reserve University, Dr. Bookwalter and her colleagues successfully showed how the MARs technique allows radiologists and technicians to create clinically useful images, even in the presence of motion. She is confident that this algorithm will be useful tool for image interpretation. She says, "The MARs algorithm requires very little alteration of the clinical MR protocol. We envision the final application of this technique to be completely automatic and likely applied by the clinical technologist prior to presentation to the radiologist."

Dr. Bookwalter will deliver a presentation on this study on Thursday, May 5, 2011 at the 2011 ARRS Annual Meeting at the Hyatt Regency Chicago.

Keri Sperry | EurekAlert!
Further information:
http://www.arrs.org

More articles from Medical Engineering:

nachricht Novel breast tomosynthesis technique reduces screening recall rate
21.02.2017 | Radiological Society of North America

nachricht Biocompatible 3-D tracking system has potential to improve robot-assisted surgery
17.02.2017 | Children's National Health System

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>