Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The Ties That Bind: Making High-speed Rail Tracks Safer Focus of Research

26.05.2011
High-speed rail is poised to rapidly expand across the U.S. and a trio of Kansas State University engineering professors intend to help riders arrive safely.

The professors have received more than $1.2 million from the Federal Railroad Administration and K-State Transportation Center to study prestressed concrete railroad ties. The professors are Bob Peterman, professor of civil engineering; Terry Beck, professor of mechanical and nuclear engineering; and John Wu, associate professor of industrial and manufacturing systems engineering, along with Pelle Duong, chief engineer at CXT Concrete Tie. The Federal Railroad Administration grant is for $899,270 and the additional funding is coming from CXT Concrete Ties and the K-State Transportation Center.

High-speed rail requires prestressed concrete railroad ties, as wooden cross ties are too flexible. For these ties to be effective, prestressing forces must be applied at a considerable distance before the rail load is applied. This is called the transfer length. To resist the heavy impacts the concrete ties utilize about 20 steel wires, each stressed to around 7,000 pounds. If the prestressed force is not properly transferred, failures can occur in the track.

Peterman has observed some of these crumbling ties in track.

"They cannot resist the load because they don't have all of that prestressed force applied," he said.

The project will focus on how to create an adequate bond between the steel wires and surrounding concrete. All factors will be examined, including the mixtures of concrete, wires and indents that allow for better bonding. The team will also develop a test that prestressed concrete producers can use to determine the bond capacity of specific types of wire.

The project will culminate in a trip to Tucson, Ariz., to conduct research at the CXT Concrete Ties' prestressed concrete plant. At the plant, ties with 12 different wires and three different strands that the team researches will be produced. The transfer length in those ties will then be measured. This is possible because of a device using laser-speckle imaging that was developed by the K-State research team along with Weixin Zhao, doctoral student in mechanical engineering. The laser-speckle device images the surface of the tie before and after detention and subsequently plots the strain profile.

"We can tell by the strain profile how far from the end of the tie the prestressed force is transferred with each of the different reinforcing types," Peterman said. "That's the culmination of the project."

The team will then make recommendations to the Federal Railroad Administration on the appropriate methods to ensure good-bonding reinforcing steel, the best concrete and similar considerations for creating durable prestressed concrete ties. As part of this project, a fully automated laser-speckle device will be developed to allow for determination of transfer length within five minutes after the concrete ties are de-tensioned. The project began recently and will conclude in two and half years.

The project is coming full circle based on a previous collaboration with K-State's Advanced Manufacturing Institute. Ten years ago the institute funded Peterman, Beck and Wu to determine if laser-speckle technology could be applied to the measurement of concrete surface strains. In the current project the research team will use the institute's expertise to create a fully automated laser-speckle imaging device.

"It's a neat story within K-State," Peterman said. "I'm looking forward to working with the entire team at AMI."

Despite many logistical issues with high-speed rail, Peterman is confident about its future.

"We will see higher-speed rail in this country," he said.

Bob Peterman, 785-532-7612, bob@k-state.edu

Bob Peterman | Newswise Science News
Further information:
http://www.k-state.edu

More articles from Transportation and Logistics:

nachricht Tool helps cities to plan electric bus routes, and calculate the benefits
09.01.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht Realistic training for extreme flight conditions
28.12.2016 | Technical University of Munich (TUM)

All articles from Transportation and Logistics >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>