Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The Ties That Bind: Making High-speed Rail Tracks Safer Focus of Research

26.05.2011
High-speed rail is poised to rapidly expand across the U.S. and a trio of Kansas State University engineering professors intend to help riders arrive safely.

The professors have received more than $1.2 million from the Federal Railroad Administration and K-State Transportation Center to study prestressed concrete railroad ties. The professors are Bob Peterman, professor of civil engineering; Terry Beck, professor of mechanical and nuclear engineering; and John Wu, associate professor of industrial and manufacturing systems engineering, along with Pelle Duong, chief engineer at CXT Concrete Tie. The Federal Railroad Administration grant is for $899,270 and the additional funding is coming from CXT Concrete Ties and the K-State Transportation Center.

High-speed rail requires prestressed concrete railroad ties, as wooden cross ties are too flexible. For these ties to be effective, prestressing forces must be applied at a considerable distance before the rail load is applied. This is called the transfer length. To resist the heavy impacts the concrete ties utilize about 20 steel wires, each stressed to around 7,000 pounds. If the prestressed force is not properly transferred, failures can occur in the track.

Peterman has observed some of these crumbling ties in track.

"They cannot resist the load because they don't have all of that prestressed force applied," he said.

The project will focus on how to create an adequate bond between the steel wires and surrounding concrete. All factors will be examined, including the mixtures of concrete, wires and indents that allow for better bonding. The team will also develop a test that prestressed concrete producers can use to determine the bond capacity of specific types of wire.

The project will culminate in a trip to Tucson, Ariz., to conduct research at the CXT Concrete Ties' prestressed concrete plant. At the plant, ties with 12 different wires and three different strands that the team researches will be produced. The transfer length in those ties will then be measured. This is possible because of a device using laser-speckle imaging that was developed by the K-State research team along with Weixin Zhao, doctoral student in mechanical engineering. The laser-speckle device images the surface of the tie before and after detention and subsequently plots the strain profile.

"We can tell by the strain profile how far from the end of the tie the prestressed force is transferred with each of the different reinforcing types," Peterman said. "That's the culmination of the project."

The team will then make recommendations to the Federal Railroad Administration on the appropriate methods to ensure good-bonding reinforcing steel, the best concrete and similar considerations for creating durable prestressed concrete ties. As part of this project, a fully automated laser-speckle device will be developed to allow for determination of transfer length within five minutes after the concrete ties are de-tensioned. The project began recently and will conclude in two and half years.

The project is coming full circle based on a previous collaboration with K-State's Advanced Manufacturing Institute. Ten years ago the institute funded Peterman, Beck and Wu to determine if laser-speckle technology could be applied to the measurement of concrete surface strains. In the current project the research team will use the institute's expertise to create a fully automated laser-speckle imaging device.

"It's a neat story within K-State," Peterman said. "I'm looking forward to working with the entire team at AMI."

Despite many logistical issues with high-speed rail, Peterman is confident about its future.

"We will see higher-speed rail in this country," he said.

Bob Peterman, 785-532-7612, bob@k-state.edu

Bob Peterman | Newswise Science News
Further information:
http://www.k-state.edu

More articles from Transportation and Logistics:

nachricht Researchers 'count cars' -- literally -- to find a better way to control heavy traffic
10.08.2017 | Florida Atlantic University

nachricht From parking garage to smart multi-purpose garage
19.07.2017 | Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO

All articles from Transportation and Logistics >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Gold shines through properties of nano biosensors

17.08.2017 | Physics and Astronomy

Greenland ice flow likely to speed up: New data assert glaciers move over sediment, which gets more slippery as it gets wetter

17.08.2017 | Earth Sciences

Mars 2020 mission to use smart methods to seek signs of past life

17.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>