Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

University aerospace research institute cleared for take-off

30.10.2007
The University of Manchester is launching a major new Aerospace Research Institute (UMARI) to tackle the many challenges facing the growing aviation industry.

The Institute - which is aiming to become the leading aerospace research facility in the world - is set to play a crucial role in the development of quieter, more efficient and more durable aircraft.

Its interdisciplinary approach will also see key issues such as environmental, health and economic impacts addressed and considered.

More than one hundred researchers at The University of Manchester from across a range of traditional disciplines are already working on an array of projects within the Institute.

UMARI offers industrial access to world-class research and facilities, plus the expertise of 120 academic staff members in 12 industrially themed research areas, which map capability directly onto the National Aerospace Strategy (NATS).

It also boasts the second largest number of Engineering and Physical Science Research Council-funded (EPSRC) research projects for the aerospace and defence sector.

The interdisciplinary approach adopted by UMARI brings together aero engineers, materials scientists, electrical and mechanical engineers, mathematicians, electronics and computing experts, manufacturing specialists and environmental scientists.

The Institute has made a flying start in its bid to secure at least one £1 million project each year, by landing a £2.2 million funding package from EPSRC to develop work a new 3D x-ray tomographic imaging facility capable of producing detailed cross-sections of structures.

This new resource will be available to researchers across the country, and will represent a major leap forward in their ability to study high-resolution 3D imagery of real-time aerospace problems such as cracking or corrosion without the need for hugely expensive and cumbersome synchrotron equipment.

While intended primarily for aerospace research, the facility will also be invaluable to other investigations looking into structures of organic materials, measuring and predicting seismic activity, or revealing buried fossils.

Another area the new Institute will focus on is the use of lightweight composite materials. Previously too costly for use in aviation, new materials and manufacturing methods are making the weight, strength and durability benefits of composites economically viable.

The University of Manchester also houses the Rolls-Royce University Technology Centre, which conducts research into advanced power systems for extreme environments.

Present at the official launch was the Science and Innovation Minister Ian Pearson, and senior figures from companies such as Airbus, BAE Systems, Rolls-Royce, Rapiscan - underlining the strength and breadth of the University's existing research links with industry and the expectations for an innovative future.

Science and Innovation Minister Ian Pearson said: "Research and innovation have an increasing part to play in business as the global economy gets more competitive. Linking research and business is at the heart of what we do at the Department for Innovation, Universities and Skills.

"Aerospace is one of the UK's most successful business sectors and Manchester is one of our leading universities. I am therefore delighted to see the two coming together with the creation of UMARI, which will help maintain the UK's position as a world leader in aerospace research."

Director of UMARI, Professor Phil Withers, said: "This new institute puts The University of Manchester at the top table of university aerospace research in Britain.

"We are now better equipped than ever to play a lead role in working with UK companies to maintain and enhance their position as major players in the full gamut of aviation-related fields.

"Whether it is finding better-performing composite materials or testing new manufacturing methods, modelling the environmental impact of air travel or combating the civil aviation terrorist threat, The University of Manchester is set to make a major contribution to all areas of aerospace research and development."

Professor John Perkins, Vice-President and Dean of the Faculty of Engineering and Physical Sciences, said: "UMARI brings together a hugely talented pool of researchers across a diverse range of disciplines. With world-class facilities available on campus, the Institute is poised to make a huge contribution to the future development of aerospace and aviation technology.

"The launch of this major new institute is another very significant step towards our goal of becoming one of the world's top 25 universities by 2015."

Jon Keighren | alfa
Further information:
http://www.manchester.ac.uk

More articles from Transportation and Logistics:

nachricht Study sets new distance record for medical drone transport
13.09.2017 | Johns Hopkins Medicine

nachricht Researchers 'count cars' -- literally -- to find a better way to control heavy traffic
10.08.2017 | Florida Atlantic University

All articles from Transportation and Logistics >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

25.09.2017 | Trade Fair News

Highest-energy cosmic rays have extragalactic origin

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>