Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bulging bumper could speed journey to computerised carriageways

19.02.2007
Investigations by engineers at The University of Manchester into an extendable car bumper could help speed along the arrival of computer-controlled motorways.

A paper presented at the Intelligent Transport Systems (ITS) World Congress and Exhibition recently offers a glimpse of how a high-tech, environmentally-friendly and efficient motorway network could operate safely in the future.

The authors, from the School of Electrical and Electronic Engineering, scooped Best Scientific Paper at the meeting of 3,000 key decision makers and technical experts from across the world.

Automated Highway Systems (AHS) and Co-operative Vehicle Highway Systems (CVHS) have been under development for many decades.

The vision is that vehicles would not be independently driven, but regulated and controlled via information beamed from transmitters at the side of the road. Cars would also communicate and co-operate with the vehicles around them to ensure a safe and fast journey for everyone.

With the use of UK motorway space estimated to be as little as five per cent, the grouping or ‘platooning’ of cars is seen as one way to increase capacity and reduce congestion. As computer-controlled vehicles would be able to travel much closer together, it would mean less fuel consumption due to a reduction in aerodynamic drag.

In their award-winning paper, the University of Manchester academics note that concerns over legal and liability issues, in the event of failure, seem to have held back development.

The system proposed by the University of Manchester team would use a ‘bridging damper’ in the event of a signal failure. This would be an intelligent bumper, which would extend to touch the car in front, should the main communication system break down.

Computer simulations have indicated that a group of at least 20 cars could continue to travel safely and smoothly in the event of a main system failure, by detecting the status of the car immediately in front through their extended bumpers. Information on the other cars in the group would not be necessary.

The authors of the paper have investigated the use of a system that would see bumpers adjust to compensate for varying road conditions such as uphill and downhill stretches.

Although much of the research has been conducted using computer simulations, the research team have developed a small simplified pneumatic version of the damper device for further investigation.

Dr Renfrew, one of the paper’s authors, said: “With so much intelligence going into the creation of co-operative vehicle highway systems, the consequences of a system failure are potentially quite severe – although the overall benefits, including the potential for greater safety, are considerable.

“Our paper explores ideas about how this type of transport system might continue to operate safely if the main communication system broke down.

“A vast amount of further research is needed to explore the viability of the proposed system. But we do hope that by tackling the issue of safety and presenting our ideas for discussion and further investigation, intelligent transport systems may arrive just a little bit quicker.”

The University of Manchester paper also proposes that the bridging damper could be used on guided bus and guided taxi systems.

But it notes that further research is needed into the technological, social, policy, psychological and economic aspects of so-called ‘contact convoy’ systems.

Martin Davey, chair of the judging panel at the conference and Project Director of Transport For London’s Technical Services Group, said: "Dr Renfrew's paper offers a glimpse of how one form of transport system might operate safely in the future.”

The authors received an attractive glass trophy and £500, which was given to Aurelio Gonzalez-Villasenor, who carried out the vast majority of the research for the paper for his PhD thesis.

Having graduated in May 2006, Dr Gonzalez-Villasenor is now working as a Research Associate in the Power Conversion Group in the University’s School of Electrical and Electronic Engineering.

Jon Keighren | alfa
Further information:
http://www.manchester.ac.uk

More articles from Transportation and Logistics:

nachricht Tool helps cities to plan electric bus routes, and calculate the benefits
09.01.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht Realistic training for extreme flight conditions
28.12.2016 | Technical University of Munich (TUM)

All articles from Transportation and Logistics >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>