Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bulging bumper could speed journey to computerised carriageways

19.02.2007
Investigations by engineers at The University of Manchester into an extendable car bumper could help speed along the arrival of computer-controlled motorways.

A paper presented at the Intelligent Transport Systems (ITS) World Congress and Exhibition recently offers a glimpse of how a high-tech, environmentally-friendly and efficient motorway network could operate safely in the future.

The authors, from the School of Electrical and Electronic Engineering, scooped Best Scientific Paper at the meeting of 3,000 key decision makers and technical experts from across the world.

Automated Highway Systems (AHS) and Co-operative Vehicle Highway Systems (CVHS) have been under development for many decades.

The vision is that vehicles would not be independently driven, but regulated and controlled via information beamed from transmitters at the side of the road. Cars would also communicate and co-operate with the vehicles around them to ensure a safe and fast journey for everyone.

With the use of UK motorway space estimated to be as little as five per cent, the grouping or ‘platooning’ of cars is seen as one way to increase capacity and reduce congestion. As computer-controlled vehicles would be able to travel much closer together, it would mean less fuel consumption due to a reduction in aerodynamic drag.

In their award-winning paper, the University of Manchester academics note that concerns over legal and liability issues, in the event of failure, seem to have held back development.

The system proposed by the University of Manchester team would use a ‘bridging damper’ in the event of a signal failure. This would be an intelligent bumper, which would extend to touch the car in front, should the main communication system break down.

Computer simulations have indicated that a group of at least 20 cars could continue to travel safely and smoothly in the event of a main system failure, by detecting the status of the car immediately in front through their extended bumpers. Information on the other cars in the group would not be necessary.

The authors of the paper have investigated the use of a system that would see bumpers adjust to compensate for varying road conditions such as uphill and downhill stretches.

Although much of the research has been conducted using computer simulations, the research team have developed a small simplified pneumatic version of the damper device for further investigation.

Dr Renfrew, one of the paper’s authors, said: “With so much intelligence going into the creation of co-operative vehicle highway systems, the consequences of a system failure are potentially quite severe – although the overall benefits, including the potential for greater safety, are considerable.

“Our paper explores ideas about how this type of transport system might continue to operate safely if the main communication system broke down.

“A vast amount of further research is needed to explore the viability of the proposed system. But we do hope that by tackling the issue of safety and presenting our ideas for discussion and further investigation, intelligent transport systems may arrive just a little bit quicker.”

The University of Manchester paper also proposes that the bridging damper could be used on guided bus and guided taxi systems.

But it notes that further research is needed into the technological, social, policy, psychological and economic aspects of so-called ‘contact convoy’ systems.

Martin Davey, chair of the judging panel at the conference and Project Director of Transport For London’s Technical Services Group, said: "Dr Renfrew's paper offers a glimpse of how one form of transport system might operate safely in the future.”

The authors received an attractive glass trophy and £500, which was given to Aurelio Gonzalez-Villasenor, who carried out the vast majority of the research for the paper for his PhD thesis.

Having graduated in May 2006, Dr Gonzalez-Villasenor is now working as a Research Associate in the Power Conversion Group in the University’s School of Electrical and Electronic Engineering.

Jon Keighren | alfa
Further information:
http://www.manchester.ac.uk

More articles from Transportation and Logistics:

nachricht Study sets new distance record for medical drone transport
13.09.2017 | Johns Hopkins Medicine

nachricht Researchers 'count cars' -- literally -- to find a better way to control heavy traffic
10.08.2017 | Florida Atlantic University

All articles from Transportation and Logistics >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>