Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Noise quietens driving

28.01.2002


Sensors and loudspeakers reduce in-car racket.


Road block: anti-sound could stop drivers getting hoarse.
© Photodisc



Tired of shouting to your passenger as you drive, striving to make your voice heard over the rumble of the car? Help is on the way, in the form of strategically placed sensors and loudspeakers.

Researchers at the Korea Advanced Institute of Science and Technology (KAIST) in Taejon have developed a prototype system that shaves up to 6 decibels off the typical motoring noise of around 60 decibels. That’s more than any other comparable method1.


The difference between 60 and 50 decibels is like that between the noise inside a car with the windows down, and the same noise heard from about 30 metres away. Forty decibels is about the same level as a humming refrigerator. The KAIST system isn’t quite there yet, but it’s a good start.

The system uses anti-sound. Sound travels as pressure waves in air. Two sets of identical waves that are perfectly out of phase cancel one another out, just as two people jumping out of sync on a trampoline eliminate each other’s bounce.

Vibration sensors - transducers, rather like microphones - are hooked up to loudspeakers. When the sensors detect noise, a signal tailored to counteract it is almost instantaneously constructed. This technique, called active control, reduces background noise in aircraft, machinery and ships.

Sonic boom

Road booming noise - the din inside a car created by vibrations in the wheels that are transmitted through the suspension - is particularly difficult to eliminate. It depends on speed, road surface and suspension, among other factors. It is thus more variable than the steady drone of aircraft or machinery.

As a result, there is no single ideal location for vibration transducers in all vehicles. And the computational demands of converting the transducer signal into an anti-sound output at the loudspeakers means that active-control systems struggle to respond fast enough to changing noise levels.

Nevertheless, Shi-Hwan Oh and colleagues at KAIST have come up with a relatively simple system that gives a fair reduction in noise.

In principle, the best way to measure motoring noise vibration would be to cover the vehicle with transducers. But if there are too many, it is impossible to combine all their inputs into an anti-sound response. A good compromise, the researchers find, is four transducers attached to the left and right front suspension system.

Similar tests helped them to locate the best positions for the loudspeakers: on the floor behind the two front seats. This creates sweet spots of noise reduction around the heads of the driver and front passenger.

Oh’s team also designed an algorithm that converts the transducer signals quickly and efficiently into a loudspeaker output signal. To reduce noise elsewhere in the car, more transducers and speakers would be needed, which would increase the complexity of the computations.


References

  1. Oh, S.-H., Kim, H.-S. & Park, Y. Active control of road booming noise in automotive interiors. Journal of the Acoustical Society of America, 111, 180 - 188, (2002).


PHILIP BALL | © Nature News Service
Further information:
http://www.nature.com/nsu/020121/020121-12.html

More articles from Transportation and Logistics:

nachricht Study sets new distance record for medical drone transport
13.09.2017 | Johns Hopkins Medicine

nachricht Researchers 'count cars' -- literally -- to find a better way to control heavy traffic
10.08.2017 | Florida Atlantic University

All articles from Transportation and Logistics >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>