Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Noise quietens driving

28.01.2002


Sensors and loudspeakers reduce in-car racket.


Road block: anti-sound could stop drivers getting hoarse.
© Photodisc



Tired of shouting to your passenger as you drive, striving to make your voice heard over the rumble of the car? Help is on the way, in the form of strategically placed sensors and loudspeakers.

Researchers at the Korea Advanced Institute of Science and Technology (KAIST) in Taejon have developed a prototype system that shaves up to 6 decibels off the typical motoring noise of around 60 decibels. That’s more than any other comparable method1.


The difference between 60 and 50 decibels is like that between the noise inside a car with the windows down, and the same noise heard from about 30 metres away. Forty decibels is about the same level as a humming refrigerator. The KAIST system isn’t quite there yet, but it’s a good start.

The system uses anti-sound. Sound travels as pressure waves in air. Two sets of identical waves that are perfectly out of phase cancel one another out, just as two people jumping out of sync on a trampoline eliminate each other’s bounce.

Vibration sensors - transducers, rather like microphones - are hooked up to loudspeakers. When the sensors detect noise, a signal tailored to counteract it is almost instantaneously constructed. This technique, called active control, reduces background noise in aircraft, machinery and ships.

Sonic boom

Road booming noise - the din inside a car created by vibrations in the wheels that are transmitted through the suspension - is particularly difficult to eliminate. It depends on speed, road surface and suspension, among other factors. It is thus more variable than the steady drone of aircraft or machinery.

As a result, there is no single ideal location for vibration transducers in all vehicles. And the computational demands of converting the transducer signal into an anti-sound output at the loudspeakers means that active-control systems struggle to respond fast enough to changing noise levels.

Nevertheless, Shi-Hwan Oh and colleagues at KAIST have come up with a relatively simple system that gives a fair reduction in noise.

In principle, the best way to measure motoring noise vibration would be to cover the vehicle with transducers. But if there are too many, it is impossible to combine all their inputs into an anti-sound response. A good compromise, the researchers find, is four transducers attached to the left and right front suspension system.

Similar tests helped them to locate the best positions for the loudspeakers: on the floor behind the two front seats. This creates sweet spots of noise reduction around the heads of the driver and front passenger.

Oh’s team also designed an algorithm that converts the transducer signals quickly and efficiently into a loudspeaker output signal. To reduce noise elsewhere in the car, more transducers and speakers would be needed, which would increase the complexity of the computations.


References

  1. Oh, S.-H., Kim, H.-S. & Park, Y. Active control of road booming noise in automotive interiors. Journal of the Acoustical Society of America, 111, 180 - 188, (2002).


PHILIP BALL | © Nature News Service
Further information:
http://www.nature.com/nsu/020121/020121-12.html

More articles from Transportation and Logistics:

nachricht Tool helps cities to plan electric bus routes, and calculate the benefits
09.01.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht Realistic training for extreme flight conditions
28.12.2016 | Technical University of Munich (TUM)

All articles from Transportation and Logistics >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers create artificial materials atom-by-atom

28.03.2017 | Physics and Astronomy

Researchers show p300 protein may suppress leukemia in MDS patients

28.03.2017 | Health and Medicine

Asian dust providing key nutrients for California's giant sequoias

28.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>