Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Satellites monitor hazardous transcontinental rail freight

26.07.2005


EUREKA project E! 2635 LOGCHAIN TRANSLOG SAFETY has developed a satellite-based communications system to monitor rail freight between Europe and Asia. Geostationary and orbiting satellites integrated in a single antenna ensure a fast response mechanism to potential hazards when dangerous materials are being moved. This makes transporting goods by rail safer and more efficient than ever, while the monitoring centre itself can be situated anywhere according to need.

“We have created an efficient and reliable telematics system for the monitoring of rail freight using modern satellite communications. It enables rapid response to alarms and will reduce unit loss during a journey,” says Professor Dr Peter Meinke, development director at German project partner Ingenieurgesellschaft für Angewandte Technologie.

Rapidly growing east-west trade



Trade between Asia and Europe is growing rapidly, with the exchange of raw materials and finished goods feeding the need for mass rail transportation. Modern rail transport is efficient, environmentally friendly and particularly effective for transporting mass cargo over long distances. Collecting data and creating a database containing information about consignments, routes of transported goods and their status, as well as threats, irregularities and damage ensures that rail transport is a well-organised and attractive means of shipping goods.

“Our satellite-based communication system works worldwide and does not need terrestrial GSM communication, which is not always available along railway lines, especially in eastern countries such as the Ukraine or Russia and in the east-west traffic corridors,” adds Professor Meinke.

Very long distances

Such monitoring is particularly important in the transfer of hazardous materials over very long distances. The status of railway vehicles is gathered by sensors, which transfer the collected data into the transceiver and via satellite to the control centre. A complete list of the types of railway vehicles, the features of the hazardous goods and the train number is held at the control centre, together with details of the civil protection services available along the route.

“If there is an accident, such as a derailment, the sensors automatically alert the control centre. The position of the train is given so that a report can be sent immediately to the civil protection services in the area, reporting the accident and the nature of the potential hazard,” explains Professor Meinke.

This is made possible by the uninterrupted monitoring service that the new system delivers. The use of both geostationary and orbiting satellites and the innovative switching technology developed by the German and Polish project partners in this €0.9 million EUREKA project allow the satellite systems to be integrated into a single antenna, providing blanket coverage.

“The development of this technology required close co-operation between the partners. This is only possible in a EUREKA project, which helps SMEs to contend with larger competitors,” says Professor Dr Meinke. The partners have successfully demonstrated the system to railway authorities and have already convinced the Polish Railway Authority to adopt it.

Paul McCallum | alfa
Further information:
http://www.eureka.be/files/:675921
http://www.eureka.be

More articles from Transportation and Logistics:

nachricht Tool helps cities to plan electric bus routes, and calculate the benefits
09.01.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht Realistic training for extreme flight conditions
28.12.2016 | Technical University of Munich (TUM)

All articles from Transportation and Logistics >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>