Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mathematics penetrates mystery of air traffic safety

21.06.2005


Air traffic control is one of the most demanding safety critical distributed systems with an enviable safety record. Using computer modelling researchers developed innovative approaches to handling uncertainty when designing such complex safety critical operations.



It’s a scary thought, but air traffic brings with it the chance of a mid-air collision. But the safety record of the air industry is excellent, so obviously it works well. "The system has grown in an evolutionary way over decades," says Dr Henk Blom of The Netherlands Aerospace Laboratory in Amsterdam, and coordinator of the IST programme-funded Hybridge project. "It works, but nobody really understand why it works so [well]. If you talk to an air traffic controller, he or she can tell you how it works from one perspective, and also about some scary events where things ran out of control."

"Similarly, [other] explanations and experiences can be heard when you talk to a pilot. In combination, their two stories explain how well pilots and controllers collaborate, but it does not explain at all why the safety records are so extremely good. The most likely explanation why it has become so safe is that the air traffic system evolved in small steps over time and each step took advantage of past experience.”


There is one big problem, though: “How can you update or automate a system in which the safety records cannot be explained or captured by your design tools?” asks Blom.

That’s the question that Hybridge sought to address.

Design-safety tools

The project developed three novel methods and supporting tools to design safety within a distributed system, but in a way that allows pilots and controllers to retain control, since they bear the responsibility in preventing any accidents from occurring.

One novel method allows the designer to analyse and mitigate combinations of small problems at different places in a distributed safety critical system. "In air traffic you have controllers, pilots, planes and mechanical and computer systems. It’s complex and highly distributed. And this may result in ’Chinese whisper’ kind of effects, which may lead to unnoticed differences in understanding between, for example, a pilot and an air traffic controller.

"When such a difference in understanding remains unrecognised, then the situation may spiral out of control, with potentially catastrophic results,” says Blom. “Some of these misunderstandings can be quite sneaky; you can’t anticipate them, they simply arise from unfortunate combinations of innocent events." The tools developed by Blom and the Hybridge team seek to identify, and prevent, these potential misunderstandings.

The two other key outcomes are simulation-based approaches. One assesses the risk of collision in a novel air traffic design. You need a massive sample of data to accurately test whether the new design is safe, because collisions occur so rarely in air traffic control.

"Through straightforward simulation it would take a person’s life-time to simulate a statistically significant number of collisions for one design," says Blom. "With the novel method you can do it overnight."

That’s the power that mathematical modelling can bring to systems’ design. What’s more, the team developed their simulation to work independently of the system architecture. It’s a major advance, because adjusting a simulator for different systems is costly in both time and money.

The third outcome of the project was a simulation-based method, which helps to optimise automation processes in air traffic control, while taking into account the uncertainties that, for example, come from sudden wind speed variations.

Airports would like to automate certain aspects of traffic control, but automation on its own does not take account of unpredictable variables, like wind speed and direction in the Jet stream. "Planes can arrive hours before they are expected if the weather conditions are right," says Blom.

The Hybridge system can factor in such variables to ensure automation runs smoothly and does not get overwhelmed, for example, by the unexpected arrival of several planes ahead of time.

The project finished last December, but work will continue among the partners. Hybridge was simply a proof of principle. Now the partners are looking to develop a full-scale application for advanced air traffic system design.

The project results could also be useful in a wide range of industries, from finance to nuclear power station management, industry, computing and telecommunications management.

"We chose air traffic because it was the most demanding safety critical distributed system we could find, so it was the ultimate test of the methods we developed. We expect it is possible to apply these novel methods to other industries as well," concludes Blom.

Tara Morris | alfa
Further information:
http://istresults.cordis.lu/

More articles from Transportation and Logistics:

nachricht Study sets new distance record for medical drone transport
13.09.2017 | Johns Hopkins Medicine

nachricht Researchers 'count cars' -- literally -- to find a better way to control heavy traffic
10.08.2017 | Florida Atlantic University

All articles from Transportation and Logistics >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>