Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

SEA-AHED - making sailing safer

09.11.2004


Improved safety at sea for cruise ship passengers and crews will be the outcome of a research and development project, funded with the help of over €1.7m (euros) from the EU’s Framework Programme.



SEA-AHED (Simulation environment and advisory system for on-board help, and estimation of manoeuvring performance during design) was a 39-month project to produce a technology system that can predict the course of cruise ships within 10 to 20 metres - far more accurately than anything currently available commercially.

Today’s super-cruisers have the capacity to carry over 4,000 people so any collision has the potential to produce unprecedented carnage. SEA-AHED can help to significantly reduce the risk of this happening and can also contribute directly to safety through on-board training. It is capable of providing situational awareness and predicting the behaviour of the vessel in situations where some machinery fails. Safety of both the passengers and the ship makes it essential that the pilot be given the best possible information regarding the consequences of any manoeuvring actions. It also demands that he be automatically alerted with all speed in case of looming hazards.


“Large ships have a very great inertia and the time they take to respond to a manoeuvring action - be it rudder angle, thruster power, rpm, etc. - is a frustratingly long one”, says Rory Doyle, the project coordinator with British Maritime Technology. “Furthermore, during all that intervening time ships are affected in very complex ways by large numbers of external factors, such as wind speed & direction and prevailing currents. So, the art of manoeuvring a ship, particularly in restricted waters, is a very difficult one involving the mental ability to predict accurately in real-time the motion of a very large vessel subject to external actions. Very little can be done to change a course of action once it has been committed to, even if the pilot realises that he has made a mistake. As such, errors are potentially devastating, particularly with passenger ships.

SEA-AHED, developed by six partners in the UK, Germany, Italy and Poland, had three principal objectives:

  • Creation of systems to enable shipyards and ship owners to assess the manoeuvring characteristics of vessels at an early stage of design,
  • Development of a navigational aid displaying in real-time the vessels current position together with future predicted or simulated positions and capable of advising the pilot of potential hazards.
  • Development of a manoeuvring training aid that will allow crews to replay previous manoeuvres and demonstrate the effects of alternate actions on the basis of real environmental information.

The system takes account of wind speed, wind direction, water depth, currents, actual rudder angles, demanded rudder angles, thruster performances, etc. and consider the non-linear and time-varying manoeuvring characteristics of the vessel. It also exploits very recent advances in aerospace and robotics applications using a technique called the Julier-Ulhmann filter.

Current systems generally rely on constant rate models that do not provide the accuracy necessary for safe operation and the project consortium claim that, for the non-linear models under consideration, SEA-AHED far outperforms the industry standard extended Kalman Filter. “Safety has to be the number one priority for cruise ships with the continually growing number of passengers”, says Cliff Funnell Cliff Funnell, FP6UK National Contact Point for Surface Transport (Maritime). “SEA-AHED is an excellent example of the type of project Framework Funding is provided for and, as this contributed 50 per cent of the total €3.4 m (euros) project cost, it seems fair to assume that without it the project would not have been viable.

“The current Framework Programme (FP6) runs until 2006 and organisations wanting free, easy to access, information on the €19bn of funding available to support internationally collaborative R&D should log on to http://fp6uk.ost.gov.uk or call central telephone support on 0870 600 6080.”

Project partners are predicting that SEA-AHED will create the demand for at least two more vessels - expected to secure around 2,300 jobs – as well as bringing considerable commercial benefits throughout the industry. This includes:

  • The system developers expect In excess of a 300% return in research investment in the 5 years following the completion of the project from direct sales.
  • Cruise ship operators can expect a reduction of approximately 5m euros per ship in terms of repair costs over a five-year period.
  • Shipbuilders can expect 0.3m euros per vessel in direct benefits through increased efficiency in the design process, and increased profit due to the ordering of more vessels (approximately 25m euros per vessel) due to increased demand for a product that will better match customer needs.

The possibilities opened up by research on the SEA-AHED project may also be extended to bulk carriers, tankers, container ships, Roll On-Roll Off and fast ferries by lending itself towards the development of intelligent cruise control, and automatic docking for these large vessels.

Other possibilities for future research include prediction and obstacle avoidance for commercial fixed wing aircraft, intelligent cruise control for cars, and automated underwater vehicles.

Dave Sanders | alfa
Further information:
http://fp6uk.ost.gov.uk

More articles from Transportation and Logistics:

nachricht Laser rescue system for serious accidents
29.11.2016 | Laser Zentrum Hannover e.V.

nachricht Bremen University students reach the final at robotics competition with parcel delivery robot
19.10.2016 | BIBA - Bremer Institut für Produktion und Logistik

All articles from Transportation and Logistics >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

A new dead zone in the Indian Ocean could impact future marine nutrient balance

06.12.2016 | Earth Sciences

Significantly more productivity in USP lasers

06.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>