Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

CSIRO contraband scanner - a world-first

05.12.2003


Australia is set to be a safer place due to another outstanding piece of CSIRO technology and innovation.



Called a ’Contraband Scanner’, the device can accurately and rapidly detect illicit drugs and explosives.

Dr Geoff Garrett, the CEO of CSIRO, today welcomed the Federal Government’s announcement that $8.4 million dollars will be allocated to the Australian Customs Service to construct a commercial-scale Scanner and facility in Brisbane to trial the world-first neutron technology developed by CSIRO.


"This is an example of CSIRO capitalising on its long-term investment in its scientists, providing them the resources and infrastructure to strategically develop leading-edge technologies for delivery to market," said Dr Garrett.

"Through our science and innovative thinking we have been able to address a real need identified by Government as being crucial to Australia’s security."

Minister for Justice and Customs, Senator Chris Ellison said, "The Government congratulates CSIRO on the development of this new technology.

"Safeguarding Australia is one of the Government’s National Research Priorities and Customs and CSIRO have teamed together to create this breakthrough for Australia.

"The technology is non-intrusive to minimise the impact of security measures on rapid freight movement, and it is estimated that scanning an air freight container will take less than two minutes.

"The technology has the potential to make the world a safer place and to reduce the threat posed by terrorism and drug trafficking."

Customs and CSIRO have already successfully prototyped and tested the unique Scanner.

The full-scale prototype, built at CSIRO’s Lucas Heights laboratory, scanned standard air cargo containers (known as a ULDs) - and correctly identified a wide range of concealed contraband.

The $8.4 million is for the design, construction and operation of the first commercial Scanner and the Brisbane facility. The Scanner will be extensively tested and screen import and export air cargo containers.

CSIRO has patented this truly world-first technology. When fully commercialised, the technology has the potential to earn millions of export dollars for Australia. The additional spin-off applications of the technology are equally exciting.

"The main advantage of the Scanner, over current and potential new scanners, is its ability to accurately and rapidly detect and predict the composition, shape and density of an object - in real-time on the tarmac," explained Dr Nick Cutmore, Program Manager at CSIRO Minerals.

"Conventional X-ray scanners are good at detecting objects based on their density and shape - but not their composition.

"Our Scanner is unique in the way it employs gamma rays and neutron analysis to build an image and composition of the object being scanned."

The On-Line Analysis and Control (OLAC) team at Lucas Heights invented this technology and scanner and has an international reputation for developing novel instrumentation for the minerals and energy industries - the Contraband Scanner is one of their many successes.

More information, images, from:

Ian Johnson, +61 3 9545 8878, +61 418 314 009

Dr Nick Cutmore, +61 2 9710 6704, +61 417 676 704

Nick Goldie | CSIRO

More articles from Transportation and Logistics:

nachricht Study sets new distance record for medical drone transport
13.09.2017 | Johns Hopkins Medicine

nachricht Researchers 'count cars' -- literally -- to find a better way to control heavy traffic
10.08.2017 | Florida Atlantic University

All articles from Transportation and Logistics >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

Neutrons observe vitamin B6-dependent enzyme activity useful for drug development

17.10.2017 | Life Sciences

NASA finds newly formed tropical storm lan over open waters

17.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>