Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

CSIRO contraband scanner - a world-first

05.12.2003


Australia is set to be a safer place due to another outstanding piece of CSIRO technology and innovation.



Called a ’Contraband Scanner’, the device can accurately and rapidly detect illicit drugs and explosives.

Dr Geoff Garrett, the CEO of CSIRO, today welcomed the Federal Government’s announcement that $8.4 million dollars will be allocated to the Australian Customs Service to construct a commercial-scale Scanner and facility in Brisbane to trial the world-first neutron technology developed by CSIRO.


"This is an example of CSIRO capitalising on its long-term investment in its scientists, providing them the resources and infrastructure to strategically develop leading-edge technologies for delivery to market," said Dr Garrett.

"Through our science and innovative thinking we have been able to address a real need identified by Government as being crucial to Australia’s security."

Minister for Justice and Customs, Senator Chris Ellison said, "The Government congratulates CSIRO on the development of this new technology.

"Safeguarding Australia is one of the Government’s National Research Priorities and Customs and CSIRO have teamed together to create this breakthrough for Australia.

"The technology is non-intrusive to minimise the impact of security measures on rapid freight movement, and it is estimated that scanning an air freight container will take less than two minutes.

"The technology has the potential to make the world a safer place and to reduce the threat posed by terrorism and drug trafficking."

Customs and CSIRO have already successfully prototyped and tested the unique Scanner.

The full-scale prototype, built at CSIRO’s Lucas Heights laboratory, scanned standard air cargo containers (known as a ULDs) - and correctly identified a wide range of concealed contraband.

The $8.4 million is for the design, construction and operation of the first commercial Scanner and the Brisbane facility. The Scanner will be extensively tested and screen import and export air cargo containers.

CSIRO has patented this truly world-first technology. When fully commercialised, the technology has the potential to earn millions of export dollars for Australia. The additional spin-off applications of the technology are equally exciting.

"The main advantage of the Scanner, over current and potential new scanners, is its ability to accurately and rapidly detect and predict the composition, shape and density of an object - in real-time on the tarmac," explained Dr Nick Cutmore, Program Manager at CSIRO Minerals.

"Conventional X-ray scanners are good at detecting objects based on their density and shape - but not their composition.

"Our Scanner is unique in the way it employs gamma rays and neutron analysis to build an image and composition of the object being scanned."

The On-Line Analysis and Control (OLAC) team at Lucas Heights invented this technology and scanner and has an international reputation for developing novel instrumentation for the minerals and energy industries - the Contraband Scanner is one of their many successes.

More information, images, from:

Ian Johnson, +61 3 9545 8878, +61 418 314 009

Dr Nick Cutmore, +61 2 9710 6704, +61 417 676 704

Nick Goldie | CSIRO

More articles from Transportation and Logistics:

nachricht Variable speed limits could reduce crashes, ease congestion in highway work zones
07.06.2017 | University of Missouri-Columbia

nachricht Experiments show that a few self-driving cars can dramatically improve traffic flow
10.05.2017 | University of Illinois College of Engineering

All articles from Transportation and Logistics >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>