Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Reducing traffic congestion with wireless system

18.09.2014

System that would wirelessly route drivers around congested roadways wins best-paper award.

At the Intelligent Transportation Systems World Congress last week, MIT researchers received one of the best-paper awards for a new system, dubbed RoadRunner, that uses GPS-style turn-by-turn directions to route drivers around congested roadways.


Image: Thinkstock

In simulations using data supplied by Singapore’s Land Transit Authority, the researchers compared their system to one currently in use in Singapore, which charges drivers with dashboard-mounted transponders a toll for entering congested areas.

The Singapore system gauges drivers’ locations with radio transmitters mounted on dozens of gantries scattered around the city, like the gantries used in many U.S. wireless toll systems. RoadRunner, by contrast, uses only handheld devices clipped to cars’ dashboards. Nonetheless, in the simulations, it yielded an 8 percent increase in average car speed during periods of peak congestion.

Moreover, for purposes of comparison, the MIT researchers restricted themselves to road-access patterns dictated by Singapore’s existing toll system. Modifying those patterns — encouraging or discouraging the use of different stretches of road — could, in principle, lead to even greater efficiency gains.

“With our system, you can draw a polygon on the map and say, ‘I want this entire region to be controlled,’” says Jason Gao, a graduate student in electrical engineering and computer science who developed the new system together with his advisor, Professor of Electrical Engineering and Computer Science Li-Shiuan Peh. “You could do one thing for a month and test it out and then change it without having to dig up roads or rebuild gantries.”

Gao and Peh also tested their system on 10 cars in Cambridge, Mass. Of course, 10 cars is not enough to dramatically affect local traffic patterns. But it was enough to evaluate the efficiency of the communications system and of the vehicle-routing algorithm. It also provided reliable data about the system’s performance for use in simulations.

Max capacity

Urban toll systems like the one in Singapore designate certain regions — with gantries at every entry point — as prone to congestion. Drivers are charged a fee for entering any such region, so they have an incentive to avoid it. The fee fluctuates over the course of the day, according to historical traffic data.

RoadRunner, by contrast, assigns each such region a maximum number of cars. Any car entering the region must acquire a virtual authorization that Gao and Peh call a “token.” If no tokens are free, RoadRunner routes the car around the region using turn-by-turn voice prompts.

The version of RoadRunner used in the Cambridge tests was largely decentralized: A car leaving a region would wirelessly announce that its token was available, and a car seeking to enter the region would request it. The system used a wireless standard called 802.11p, a variation on Wi-Fi that uses a narrower slice of the electromagnetic spectrum but is licensed for higher-power transmissions, so that it has a much larger broadcast range.

It could be that the time savings promised by RoadRunner would be enough to induce commuters to use it. But it would also be possible to modify the system so that any car entering a congestion-prone region without a token would be assessed a small fine.

Reporting a car for tokenless entry would require uploading data to a central server, but it wouldn’t require specifying the car’s location at a resolution finer than that of the region. So Gao believes that, even though RoadRunner relies on GPS data, it wouldn’t compromise drivers’ privacy any more than existing urban toll systems do. In fact, he argues, it would compromise privacy less, since cars that followed the system’s routing instructions would never have their locations reported.

An app for that

In their experiments, Gao and Peh used cellphones to control commercial 802.11p radios, which are about the size of a typical electronic-toll dashboard transponder. But in the future, it may be possible to embed the radios directly into cellphones.

At the International Symposium on Low Power Electronics and Design in August, Gao, Peh, and lead author Pilsoon Choi, a postdoc in Peh’s group, together with researchers at Nanyang Technological University in Singapore, presented a paper demonstrating that an 802.11p radio built from gallium nitride and controlled by silicon electronics would consume half the power that existing radios do.

Moreover, the Singapore-MIT Alliance for Research and Technology (SMART) has developed a technique for integrating gallium nitride into existing silicon-chip manufacturing processes and is currently building a chip-fabrication facility to implement it.

“In Singapore, the government already requires every single registered vehicle to have a dash-mounted transponder,” Gao says. “That’s already there, so you might as well take advantage of it. In other places, where you don’t have that in place, it would be easier to deploy it if you said, ‘You can download this app and just leave your cellphone on your dashboard.’”

“A distributed decision process is an alternative to centralized models that has to be explored and, as far as I know, has been rarely if not ever addressed,” says Jean Bergounioux, secretary general of ATEC ITS France, a French industrial research consortium dedicated to novel transportation systems. “RoadRunner offers the possibility of decentralizing as many decisions as possible at the lower level, without excluding that global decisions be made at the upper level.”

“It's worth getting into field trial as soon as possible to test and evaluate the feasibility of its industrial development and deployment,” Bergounioux adds.

Kimberly Allen | Eurek Alert!
Further information:
http://newsoffice.mit.edu/2014/wireless-system-traffic-congestion-0915

More articles from Transportation and Logistics:

nachricht Laser rescue system for serious accidents
29.11.2016 | Laser Zentrum Hannover e.V.

nachricht Bremen University students reach the final at robotics competition with parcel delivery robot
19.10.2016 | BIBA - Bremer Institut für Produktion und Logistik

All articles from Transportation and Logistics >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>