Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Self-organizing traffic lights

16.09.2010
A new patent may revolutionarize traffic control, saving fuel, reducing travel times and emissions, and doing it all without limiting drivers' mobility. This truly "green" idea will have drivers waiting less and help us preserve our environment.

Currently, traffic jams and road congestion do a lot more than annoy millions of people every day. In the United States alone, delays linked to backed-up traffic cost nearly $100 billion each year, and waste more than 10 billion litres of fuel, not to mention countless human hours. And then there's all the extra CO2 and other pollutants spewed into the atmosphere. As developing nations become more industrialized, these problems will only grow worse.

Unless there is some radical new solution. We can build more roads, of course, encourage more people to ride bikes or share their cars with others, and improve buses and other forms of public transport. But there may be another way.

As Stefan Lämmer at the Institute of Transport & Economics of TU Dresden and Dirk Helbing of ETH Zurich have recently shown, we could reduce traffic congestion markedly by re-thinking the way we try to control how traffic flows. We're fixed on the idea that lights should cycle on and off in a regular and predictable way, but this idea, they say, is unnecessarily restrictive. And less orderly patterns could be far more efficient, reducing travel times for all, and making traffic jams far less frequent.

Engineering without engineers...

At the moment, traffic engineers normally tailor the cyclic operation of lights to match known traffic patterns from the recent past. Lights on main roads stay green longer during peak hours, for example. But so far it requires supercomputers or engineers, who do the tuning.

Lämmer and Helbing wondered if traffic lights might devise better solutions on their own, if given some simple traffic-responsive operating rules and left to organise their own on-off schedules. To find out, they modelled the flow of traffic as if it were a fluid, and explored what happens at road intersections, where traffic leaving one road has to enter another, much like fluid moving through a network of pipes.

Jams can arise, obviously, if traffic entering a road overloads its capacity. To avoid this, Helbing and Lämmer gave each set of lights sensors that feed information about the traffic conditions at a given moment into a computer chip, which then calculates the flow of vehicles expected in the near future. It also works out how long the lights should stay green in order to clear the road and thereby relieve the pressure. In this way, each set of lights can estimate for itself how best to adapt to the conditions expected at the next moment.

Efficiency of self-organization

They found, however, that this simple rule isn't enough: the lights sometimes adapt too much. If they are only adapting to conditions locally, they might stay green for too long and cause trouble further away. To avoid this, Lämmer and Helbing modified things so that what happens at one set of traffic lights would affect how the others respond. By working together and monitoring the lengths of queues along a long stretch of road, the self-organised lights prevent long jams from forming.

Despite the simplicity of these rules, they seem to work remarkably well. Computer simulations demonstrate that lights operating this way would achieve a significant reduction in overall travel times and keep no one waiting at a light too long. One of the biggest surprises, however, is that all this improvement comes with the lights going on and off in a seemingly chaotic way, not following a regular pattern as one might expect.

Reducing delay time by 10%-30%

The key is that this kind of control does not fight the natural fluctuations in the traffic flow by trying to impose a certain flow rhythm. Rather, it uses randomly appearing gaps in the flow to serve other traffic streams. According to their simulations, this strategy can reduce average delay times by 10%–30%. Remarkably, the variation in travel times goes down as well, although the signal operation tends to be non-periodic and, therefore, less predictable. You can't say precisely how the lights will go on and off, but you can be sure your drive will be shorter.

What’s more, Helbing points out, the scheme eliminates other irritating problems, such as drivers have to wait a long time at empty intersections because the lights’ schedules are determined by the traffic flow at busier times, or lights cycling even in the middle of the night when there is no need. The self-organising traffic scheme eliminates these problems because the lights remain responsive to local demands, for instance sensing an approaching car and changing to green to let it through.

Town planners are beginning to look at self-organising lights as a practical solution to looming traffic congestion. Lämmer and Helbing are working with a German traffic agency to implement the idea, soon. In previous tests based on Dresden’s road layout, they’ve had encouraging results.

For further information:

Prof. Dirk Helbing, ETH Zurich
phone: +41 44 632 88 80
dirk.helbing@gess.ethz.ch
Dr.-Ing. Stefan Lämmer, TU Dresden
phone: +49 (351) 463-36802
stefan.laemmer@tu-dresden.de

Claudia Naegeli | idw
Further information:
http://www.santafe.edu/media/workingpapers/10-09-019.pdf
http://www.tu-dresden.de

Further reports about: CO2 ETH Zurich emissions traffic control traffic flow traffic jam traffic lights

More articles from Transportation and Logistics:

nachricht Study sets new distance record for medical drone transport
13.09.2017 | Johns Hopkins Medicine

nachricht Researchers 'count cars' -- literally -- to find a better way to control heavy traffic
10.08.2017 | Florida Atlantic University

All articles from Transportation and Logistics >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Underwater acoustic localization of marine mammals and vehicles

23.11.2017 | Information Technology

Enhancing the quantum sensing capabilities of diamond

23.11.2017 | Physics and Astronomy

Meadows beat out shrubs when it comes to storing carbon

23.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>