Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Self-organizing traffic lights

16.09.2010
A new patent may revolutionarize traffic control, saving fuel, reducing travel times and emissions, and doing it all without limiting drivers' mobility. This truly "green" idea will have drivers waiting less and help us preserve our environment.

Currently, traffic jams and road congestion do a lot more than annoy millions of people every day. In the United States alone, delays linked to backed-up traffic cost nearly $100 billion each year, and waste more than 10 billion litres of fuel, not to mention countless human hours. And then there's all the extra CO2 and other pollutants spewed into the atmosphere. As developing nations become more industrialized, these problems will only grow worse.

Unless there is some radical new solution. We can build more roads, of course, encourage more people to ride bikes or share their cars with others, and improve buses and other forms of public transport. But there may be another way.

As Stefan Lämmer at the Institute of Transport & Economics of TU Dresden and Dirk Helbing of ETH Zurich have recently shown, we could reduce traffic congestion markedly by re-thinking the way we try to control how traffic flows. We're fixed on the idea that lights should cycle on and off in a regular and predictable way, but this idea, they say, is unnecessarily restrictive. And less orderly patterns could be far more efficient, reducing travel times for all, and making traffic jams far less frequent.

Engineering without engineers...

At the moment, traffic engineers normally tailor the cyclic operation of lights to match known traffic patterns from the recent past. Lights on main roads stay green longer during peak hours, for example. But so far it requires supercomputers or engineers, who do the tuning.

Lämmer and Helbing wondered if traffic lights might devise better solutions on their own, if given some simple traffic-responsive operating rules and left to organise their own on-off schedules. To find out, they modelled the flow of traffic as if it were a fluid, and explored what happens at road intersections, where traffic leaving one road has to enter another, much like fluid moving through a network of pipes.

Jams can arise, obviously, if traffic entering a road overloads its capacity. To avoid this, Helbing and Lämmer gave each set of lights sensors that feed information about the traffic conditions at a given moment into a computer chip, which then calculates the flow of vehicles expected in the near future. It also works out how long the lights should stay green in order to clear the road and thereby relieve the pressure. In this way, each set of lights can estimate for itself how best to adapt to the conditions expected at the next moment.

Efficiency of self-organization

They found, however, that this simple rule isn't enough: the lights sometimes adapt too much. If they are only adapting to conditions locally, they might stay green for too long and cause trouble further away. To avoid this, Lämmer and Helbing modified things so that what happens at one set of traffic lights would affect how the others respond. By working together and monitoring the lengths of queues along a long stretch of road, the self-organised lights prevent long jams from forming.

Despite the simplicity of these rules, they seem to work remarkably well. Computer simulations demonstrate that lights operating this way would achieve a significant reduction in overall travel times and keep no one waiting at a light too long. One of the biggest surprises, however, is that all this improvement comes with the lights going on and off in a seemingly chaotic way, not following a regular pattern as one might expect.

Reducing delay time by 10%-30%

The key is that this kind of control does not fight the natural fluctuations in the traffic flow by trying to impose a certain flow rhythm. Rather, it uses randomly appearing gaps in the flow to serve other traffic streams. According to their simulations, this strategy can reduce average delay times by 10%–30%. Remarkably, the variation in travel times goes down as well, although the signal operation tends to be non-periodic and, therefore, less predictable. You can't say precisely how the lights will go on and off, but you can be sure your drive will be shorter.

What’s more, Helbing points out, the scheme eliminates other irritating problems, such as drivers have to wait a long time at empty intersections because the lights’ schedules are determined by the traffic flow at busier times, or lights cycling even in the middle of the night when there is no need. The self-organising traffic scheme eliminates these problems because the lights remain responsive to local demands, for instance sensing an approaching car and changing to green to let it through.

Town planners are beginning to look at self-organising lights as a practical solution to looming traffic congestion. Lämmer and Helbing are working with a German traffic agency to implement the idea, soon. In previous tests based on Dresden’s road layout, they’ve had encouraging results.

For further information:

Prof. Dirk Helbing, ETH Zurich
phone: +41 44 632 88 80
dirk.helbing@gess.ethz.ch
Dr.-Ing. Stefan Lämmer, TU Dresden
phone: +49 (351) 463-36802
stefan.laemmer@tu-dresden.de

Claudia Naegeli | idw
Further information:
http://www.santafe.edu/media/workingpapers/10-09-019.pdf
http://www.tu-dresden.de

Further reports about: CO2 ETH Zurich emissions traffic control traffic flow traffic jam traffic lights

More articles from Transportation and Logistics:

nachricht Study sets new distance record for medical drone transport
13.09.2017 | Johns Hopkins Medicine

nachricht Researchers 'count cars' -- literally -- to find a better way to control heavy traffic
10.08.2017 | Florida Atlantic University

All articles from Transportation and Logistics >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>