Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Keeping Trains on Track

27.07.2010
TAU helps develop early-warning hazard system for the world's railways

Thousands of people around the world have died in train wrecks caused by natural disasters. In 2004, the tsunami in Southeast Asia derailed a Sri Lankan train, killing 1,700 people. But with modern advances, these tragedies can be avoided — and a Tel Aviv University researcher, working in collaboration with teams from seven countries, is leading the way.

Prof. Lev V. Eppelbaum of Tel Aviv University's Department of Geophysics & Planetary Sciences and his colleagues are collecting high-tech sensing data from satellites, airplanes, magnetic and soil sensors, and unmanned aircraft to devise a solution that will provide a reliable early-warning system for train operators.

It's all part of the European Project FP7 research, "Integrated System for Transport Infrastructures Surveillance and Monitoring by Electromagnetic Sensing," which includes participants from Israel, Italy, France, Sweden, Norway, Switzerland and Romania. The international team of researchers aims to connect emerging technologies so that train accidents caused by avalanches, earthquakes and even terrorists can be avoided.

A system to detect sabotage

"Sinkholes, avalanches, landslides, earthquakes, flash floods — these disasters can cause train wrecks anywhere around the world," says Prof. Eppelbaum. "We are hoping to develop a platform that can be fitted to any railway, passenger or freight carrier, to better predict natural disasters and possible terror attacks on rail lines." He says that his part of the study should be completed by next year.

"We are creating a new interpretation system — allowing us to integrate cutting-edge technologies from across Europe," he says, adding that the biggest challenge, right now, is eliminating background "noise" from the data being collected.

Climatic features and parameters such as soil types and physical geography can be very different from one region to another, which makes the work even more of a challenge. Some of Prof. Eppelbaum's recent research advances have been reported in the Zeitschrift für Geomorphologie, the Journal of Arid Environments and the Proceedings of the SAGEEP Conference (USA).

On the right Amtrak

The international team also hopes to examine the additional risk of terror attacks on trains. While all the other data collected by the research teams will be made public, this section will remain top secret.

Prof. Eppelbaum expects their methods will be adopted by the world's railway systems. As the cost of fuel for cars and planes rises, and environmentally-friendly train travel is more heavily promoted, experts predict that more Americans will be riding the rails to work and between cities. In 2008, about 30 million passengers rode on Amtrak trains, and train ridership figures have been steadily increasing.

At present, there is no monitoring system for either natural disasters or terror attacks on rail systems in America or anywhere else. Prof. Eppelbaum says he has his work cut out for him: putting together different geophysical measurements and formats of sensors, he is collecting very different kinds of data and trying to turn it into usable information.

"It's complicated math and physics," says Prof. Eppelbaum. "And yes, it includes lots of scribbling and equations on the chalkboard."

George Hunka | EurekAlert!
Further information:
http://www.aftau.org

More articles from Transportation and Logistics:

nachricht Variable speed limits could reduce crashes, ease congestion in highway work zones
07.06.2017 | University of Missouri-Columbia

nachricht Experiments show that a few self-driving cars can dramatically improve traffic flow
10.05.2017 | University of Illinois College of Engineering

All articles from Transportation and Logistics >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Study shines light on brain cells that coordinate movement

26.06.2017 | Life Sciences

Smooth propagation of spin waves using gold

26.06.2017 | Physics and Astronomy

Switchable DNA mini-machines store information

26.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>