Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Zoology and botany hand in hand

Research on plants and animals is still done isolated from each other. A new reference book presents results of recent research dealing with polyploidy, which is a special subject of evolution and genetics. For the first time animal and vegetable examples are compared with each other.

The brilliant “Father of evolutionary theory” Charles Darwin discovered his findings without knowing about genetics at all. His analysis is based on precise observation and description of wildlife.

When the priest Gregor Mendel lighted on the systematics of heredity in the garden of the Augustinian abbey in Brno at the same time, he limited his investigations to plants. His findings had far-reaching consequences for science and brought him the most justified nickname “Father of genetics”.

But it was only after the verification of his work by animal examples, like his studies on the heredity of sea urchin eggs, that his research was widely accepted in the academic world. In the times of the “Modern synthesis” by J. Huxley in 1942 Mendel’s and Darwin’s visions were merged after many years. Nowadays research of plants and animals is still handled quite separately. A new reference book presents recent research of the special field of evolutionary research and genetics and compares animal and plant examples.

Fast way to new species
One aspect of genetic research deals with polyploid organisms which have more than the usual two chromosome sets in their cells. Polyploidy often results from the fusion of the genetic material of two species (hybridization) or the duplication of the own genome. “Although it might determine dramatic problems polyploidy can lead to complete new species very quickly which do not reproduce with their parents at all or only very limited,” says Dunja Lamatsch from the Research Institute for Limnology of the University of Innsbruck in Mondsee (Austria), one of the editors of the new book. “Especially the combination of the genome increases the variety of genotypes and offers a bunch of new possibilities to evolution: creatures with completely new (“transgressive”) characteristics may arise which do not appear in any principal form; new habitats can be populated.”
Manifold examples for polyploidy
A key point of polyploidy research is focused on the world of plants as polyploidy has played a role in the evolution of 70% of all species. The number of polyploid agricultural crop (e.g. cotton, wheat) is large since some polyploidy plants develop notably large organs (leaves, stem, root, fruits) and moreover show increased vitality and adaptability. This made research in agricultural practice most profitable. Nevertheless also animals show very interesting polyploidy phenomenons, e.g. those which reproduce as natural clones or hybrids of three species.
New reference book in polyploidy
It is no coincidence that the editors of the reference book are situated at limnological research institutes in Germany and Austria: In vertebrates it is most common that fish and amphibians are polyploid. The book “Trends in Polyploidy Research in Animals and Plants” by Matthias Stöck from Leibniz Institute of Freshwater Ecology and Inland Fisheries and Dunja Lamatsch which was recently published by Karger is a milestone in polyploidy. After 30 years eight topics comparing current examples from animals and plants are collated and discussed. Numerous reputable authors from twelve countries contributed to this book.

Publication: Trends in Polyploidy Research in Animals and Plants. Cytogenetic and Genome Research, Vol. 140, No. 2-4, 2013. Karger publishers. ISBN: 978-3-318-02475-3 (

Dr. Matthias Stöck (Editor)
Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB)
Dr. Dunja K Lamatsch (Editor)
Forschungsinstitut für Limnologie, Mondsee, Universität Innsbruck
Prof. Michael Schmid (Chief-Editor)
Biozentrum Universität Würzburg
Dr. Sabine Wanzenböck (Öffentlichkeitsarbeit)
Forschungsinstitut für Limnologie, Mondsee, Universität Innsbruck

Dr. Sabine Wanzenböck | Universität Innsbruck
Further information:

More articles from Life Sciences:

nachricht When fat cells change their colour
28.10.2016 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Aquaculture: Clear Water Thanks to Cork
28.10.2016 | Technologie Lizenz-Büro (TLB) der Baden-Württembergischen Hochschulen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Prototype device for measuring graphene-based electromagnetic radiation created

28.10.2016 | Power and Electrical Engineering

Gamma ray camera offers new view on ultra-high energy electrons in plasma

28.10.2016 | Physics and Astronomy

When fat cells change their colour

28.10.2016 | Life Sciences

More VideoLinks >>>