Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Zoology and botany hand in hand

17.09.2013
Research on plants and animals is still done isolated from each other. A new reference book presents results of recent research dealing with polyploidy, which is a special subject of evolution and genetics. For the first time animal and vegetable examples are compared with each other.

The brilliant “Father of evolutionary theory” Charles Darwin discovered his findings without knowing about genetics at all. His analysis is based on precise observation and description of wildlife.

When the priest Gregor Mendel lighted on the systematics of heredity in the garden of the Augustinian abbey in Brno at the same time, he limited his investigations to plants. His findings had far-reaching consequences for science and brought him the most justified nickname “Father of genetics”.

But it was only after the verification of his work by animal examples, like his studies on the heredity of sea urchin eggs, that his research was widely accepted in the academic world. In the times of the “Modern synthesis” by J. Huxley in 1942 Mendel’s and Darwin’s visions were merged after many years. Nowadays research of plants and animals is still handled quite separately. A new reference book presents recent research of the special field of evolutionary research and genetics and compares animal and plant examples.

Fast way to new species
One aspect of genetic research deals with polyploid organisms which have more than the usual two chromosome sets in their cells. Polyploidy often results from the fusion of the genetic material of two species (hybridization) or the duplication of the own genome. “Although it might determine dramatic problems polyploidy can lead to complete new species very quickly which do not reproduce with their parents at all or only very limited,” says Dunja Lamatsch from the Research Institute for Limnology of the University of Innsbruck in Mondsee (Austria), one of the editors of the new book. “Especially the combination of the genome increases the variety of genotypes and offers a bunch of new possibilities to evolution: creatures with completely new (“transgressive”) characteristics may arise which do not appear in any principal form; new habitats can be populated.”
Manifold examples for polyploidy
A key point of polyploidy research is focused on the world of plants as polyploidy has played a role in the evolution of 70% of all species. The number of polyploid agricultural crop (e.g. cotton, wheat) is large since some polyploidy plants develop notably large organs (leaves, stem, root, fruits) and moreover show increased vitality and adaptability. This made research in agricultural practice most profitable. Nevertheless also animals show very interesting polyploidy phenomenons, e.g. those which reproduce as natural clones or hybrids of three species.
New reference book in polyploidy
It is no coincidence that the editors of the reference book are situated at limnological research institutes in Germany and Austria: In vertebrates it is most common that fish and amphibians are polyploid. The book “Trends in Polyploidy Research in Animals and Plants” by Matthias Stöck from Leibniz Institute of Freshwater Ecology and Inland Fisheries and Dunja Lamatsch which was recently published by Karger is a milestone in polyploidy. After 30 years eight topics comparing current examples from animals and plants are collated and discussed. Numerous reputable authors from twelve countries contributed to this book.

Publication: Trends in Polyploidy Research in Animals and Plants. Cytogenetic and Genome Research, Vol. 140, No. 2-4, 2013. Karger publishers. ISBN: 978-3-318-02475-3 (http://www.karger.com/Book/Home/261041)

Contact:
Dr. Matthias Stöck (Editor)
Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB)
E-Mail: matthias.stoeck@igb-berlin.de
Webseite: http://www.igb-berlin.de/
http://www.matthiasstoeck.com
Dr. Dunja K Lamatsch (Editor)
Forschungsinstitut für Limnologie, Mondsee, Universität Innsbruck
E-Mail: dunja.lamatsch@uibk.ac.at
Webseite: http://www.uibk.ac.at/limno/
Prof. Michael Schmid (Chief-Editor)
Biozentrum Universität Würzburg
E-Mail: m.schmid@biozentrum.uni-wuerzburg.de
Webseite: http://www.humgen.biozentrum.uni-wuerzburg.de/
Dr. Sabine Wanzenböck (Öffentlichkeitsarbeit)
Forschungsinstitut für Limnologie, Mondsee, Universität Innsbruck
E-Mail: sabine.wanzenboeck@uibk.ac.at

Dr. Sabine Wanzenböck | Universität Innsbruck
Further information:
http://www.uibk.ac.at

More articles from Life Sciences:

nachricht Zap! Graphene is bad news for bacteria
23.05.2017 | Rice University

nachricht Discovery of an alga's 'dictionary of genes' could lead to advances in biofuels, medicine
23.05.2017 | University of California - Los Angeles

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Scientists propose synestia, a new type of planetary object

23.05.2017 | Physics and Astronomy

Zap! Graphene is bad news for bacteria

23.05.2017 | Life Sciences

Medical gamma-ray camera is now palm-sized

23.05.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>