Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Zebrafish swim into drug development

22.01.2010
By combining the tools of medicinal chemistry and zebrafish biology, a team of Vanderbilt investigators has identified compounds that may offer therapeutic leads for bone-related diseases and cancer.

The findings, reported in ACS Chemical Biology, support using zebrafish as a novel platform for drug development.

In 2007, Charles Hong, M.D., Ph.D., and colleagues described using fish embryos to screen for compounds that interfere with signaling pathways involved in early development — pathways known to play roles in a variety of disease processes. They discovered the compound "dorsomorphin" and demonstrated that it blocked BMP (bone morphogenetic protein) signaling, which has been implicated in anemia, inflammatory responses and bone-related disorders.

But in examining dorsomorphin further, the investigators found that it had other "off-target" effects — it also blocked the VEGF (vascular endothelial growth factor) receptor and disrupted zebrafish blood vessel development, a process called angiogenesis.

"Off-target effects contribute to side effects and limit the therapeutic potential of small molecule signaling inhibitors," said Hong, assistant professor of Medicine and Pharmacology.

To find compounds that were more selective BMP inhibitors (didn't have the off-target effects), Hong and colleagues opted to use their zebrafish drug discovery screen as a drug development/optimization tool.

Craig Lindsley, Ph.D., director of Medicinal Chemistry for the Vanderbilt Program in Drug Discovery, Corey Hopkins, Ph.D., associate director, and their colleagues used the dorsomorphin "backbone" as a starting point to synthesize many different analogs — subtly different dorsomorphin-like compounds.

Then Hong and his team tested these compounds for their effects on zebrafish embryonic development.

"We quickly discovered that the two effects of dorsomorphin could be separated — some analogs only affected patterning and some only affected angiogenesis," Hong said. The investigators biochemically characterized compounds of both types and found very selective and potent BMP inhibitors and selective VEGF inhibitors.

The zebrafish embryo, Hong said, is very good at assessing a compound's selectivity for a certain signaling pathway. Mixed signals from compounds that are not selective (they hit multiple targets) are toxic to the embryo — it "shuts down development."

The team identified a VEGF inhibitor, for example, that outperformed an existing VEGF inhibitor that was being developed for cancer therapy (blocking angiogenesis cuts off the "supply lines" for a growing tumor) but was pulled from development during a Phase III trial.

"If they (the pharmaceutical company) had tested that compound in zebrafish, they would have quickly learned that it wasn't potent or selective," Hong said.

"Using zebrafish is a novel way to do a structure-activity relationship study" — a study that examines a series of analog compounds to determine which is the most selective and most potent, he added.

Traditionally, pharmaceutical companies perform these types of studies in vitro, with isolated proteins or cells. But Hong points out that in vitro studies assess only "one dimension" of the biology. Compounds that have great activity in vitro often fail later because they have poor selectivity or because they do not have chemical properties that make them good drugs (they are not "bioavailable").

"The zebrafish assesses selectivity and bioavailability all at the same time," Hong says. "What the traditional approach takes months to do, the zebrafish does in a day."

Because BMP and VEGF inhibitors have therapeutic potential for a variety of diseases, the investigators will begin to test the drug candidates in mouse models.

Hong praised Vanderbilt leaders for putting into place the drug discovery infrastructure that made the work possible.

"Having medicinal chemists and zebrafish biologists together in the same building really fostered our collaboration," he said. "This kind of collaboration would not be likely at the majority of medical institutions."

The research was supported by the Veterans Administration, the Center for Research in Fibrodysplasia Ossificans Progressiva and Related Disorders, the National Institutes of Health and the GSK Cardiovascular Research and Education Foundation.

Leigh MacMillan | EurekAlert!
Further information:
http://www.vanderbilt.edu

Further reports about: BMP VEGF Vanderbilt drug discovery mouse model signaling pathway zebrafish zebrafish embryo

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Supersensitive through quantum entanglement

28.06.2017 | Physics and Astronomy

X-ray photoelectron spectroscopy under real ambient pressure conditions

28.06.2017 | Physics and Astronomy

Mice provide insight into genetics of autism spectrum disorders

28.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>