Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Zebrafish models identify high-risk genetic features in leukemia patients

11.05.2011
Genes predict worst-case scenario

Leukemia is the most common childhood cancer; it also occurs in adults. Now researchers working with zebrafish at Huntsman Cancer Institute (HCI) at the University of Utah have identified previously undiscovered high-risk genetic features in T-cell acute lymphocytic leukemia (T-ALL), according to an article published online May 9, 2011, in the cancer research journal Oncogene. When compared to samples from human patients with T-ALL, these genetic characteristics allowed scientists to predict which patients may have more aggressive forms of the disease that either recur after remission or do not respond to treatment.

While there are several subtypes, in all leukemias the body overproduces certain blood cells that have not matured properly. In this study, the researchers investigated a particular type of leukemia that results from genetic mutations in T-cells, a type of white blood cell found in both humans and zebrafish.

Using a technique called serial transplantation, the research team studied T-ALL in zebrafish and selected cancer cells from those in which the disease advanced more rapidly for further testing. This method allowed the research team to zero in on genes associated with T-ALL's most aggressive forms. They then compared these genetic features to samples from human patients whose clinical outcomes with T-ALL are known.

"We can cure 80% of the children who come to us with leukemia, but there are 20 percent we cannot cure. Sometime the cures come at a high cost to patients in immediate and delayed side effects from chemotherapy," said Nikolaus Trede, M.D., Ph.D., associate professor in the Department of Pediatrics at the University of Utah (U of U) School of Medicine, HCI investigator, and a senior author of the article. "These results may lead to tests that can show which children with the disease need the strongest chemotherapy to overcome their cancer. Children with less aggressive forms of leukemia can be cured with milder chemotherapy that produces fewer side effects, both during treatment and long after treatment is complete."

Kimble Frazer, M.D., Ph.D., assistant professor of pediatrics at the U of U and a member of the Trede Lab, is co-senior author of the article. "One of the genes identified in the study had not previously been recognized as important in T-ALL," said Frazer. "Another gene, associated with patients whose outcomes were least favorable, has not received enough research attention to even have an official name. It only has an 'address' that tells its location on a specific chromosome."

The researchers stress that their results are still preliminary. They plan further laboratory studies to bolster the case that this unnamed gene with the address C7orf60 is important in the development of T-ALL. Additional zebrafish experiments that focus on this gene could be designed to amplify its effects and confirm its contribution to creating more, or hardier, leukemia. In the end, the research could lead to a test that would allow doctors to determine the best course of treatment for an individual leukemia patient by analyzing a blood sample.

Both Trede and Frazer credit the article's first-listed author, Lynnie Rudner, with much of the work leading to the published results. Rudner is the recipient of the American Medical Association (AMA) Foundation's Seed Grant, one of only 38 individuals nationwide who received a seed grant in 2010, and a student in the U of U's M.D./Ph.D. program, which produces graduates qualified in both clinical practice and laboratory research.

Other co-authors include researchers from Brigham and Women's Hospital in Boston, Massachusetts, University of Texas at Brownsville, Dana-Farber Cancer Institute and Children's Hospital Boston, and St. Jude Children's Research Hospital in Memphis, Tenn.

This work was supported by funding from the National Institute of Allergy and Infectious Diseases, the Eunice Kennedy Shriver National Institute of Child Health & Human Development, the American Medical Association, Huntsman Cancer Foundation, the Children's Health Research Center at the University of Utah, and Huntsman Cancer Institute core facilities.

The mission of Huntsman Cancer Institute (HCI) at The University of Utah is to understand cancer from its beginnings, to use that knowledge in the creation and improvement of cancer treatments, to relieve the suffering of cancer patients, and to provide education about cancer risk, prevention, and care. HCI is a National Cancer Institute-designated cancer center, which means that it meets the highest national standards for cancer care and research and receives support for its scientific endeavors. HCI is also a member of the National Comprehensive Cancer Network (NCCN) a not-for-profit alliance of the world's leading cancer centers, which is dedicated to improving the quality and effectiveness of care provided to patients with cancer. For more information about HCI, please visit www.huntsmancancer.org.

Linda Aagard | EurekAlert!
Further information:
http://www.utah.edu

Further reports about: Cancer HCI Medical Wellness T-ALL T-cell blood cell genetic mutation health services zebrafish

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>