Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Yellow Biotechnology: Using plants to silence insect genes in a high-throughput manner

02.02.2012
Using virus vector-mediated RNAi enables scientists to rapidly study the function of insect genes

Yellow Biotechnology refers to biotechnology with insects − analogous to the green (plants) and red (animals) biotechnology. Active ingredients or genes in insects are characterized and used for research or application in agriculture and medicine.


Nicotine-resistant larvae of the Tobacco hornworm Manduca sexta have become a new tool for investigating unknown gene functions in Lepidoptera – thanks to a novel RNAi-based procedure. Courtesy of Jan-Peter Kasper

Scientists at the Max Planck Institute for Chemical Ecology in Jena, Germany, are now using a procedure which brings forward ecological research on insects: They study gene functions in moth larvae by manipulating genes using the RNA interference technology (RNAi). RNAi is induced by feeding larvae with plants that have been treated with viral vectors. This method called “plant virus based dsRNA producing system” (VDPS) increases sample throughput compared to the use of genetically transformed plants.

Natural toxins against herbivores

More than 200,000 insects species are herbivores. They depend on plants for food and have adapted their metabolism accordingly in the course of evolution to render plant defenses, such as the toxins plants produce to fend off herbivores, ineffective. The operating instructions of these detoxification processes are coded in different genes. Insects have evolved an enormous diversity of adaptation mechanisms; they colonize most habitats on this planet – which makes them interesting research objects in ecological studies. Which insect species attack which plants species? Which toxins or signaling substances are involved? Has the insect species adapted to one specific plant species or is it a food generalist? Interesting for agriculture: Which genes allow particular pest insects, such as the pollen beetle Meligethes aeneus or the Western corn rootworm Diabrotica virgifera virgifera, to be so destructive to crop plants? Knowing these detoxification genes and switching them off with the consequence that plant toxins are no longer effective, is currently a research subject in plant breeding. First success stories have already been reported – thanks to the use of RNAi technology.

Scientists at the Max Planck Institute for Chemical Ecology examined a well-known plant toxin: nicotine. Plants of the species Nicotiana attenuata (coyote tobacco) produce nicotine as a defensive substance against herbivores. However, it does not have any toxic effects on their worst enemy: larvae of the tobacco hornworm Manduca sexta. The insect is resistant against this alkaloid; genes that encode nicotine-catabolizing enzymes may be responsible for its resistance. These so called CYP genes are involved in the formation of cytochrome P450 enzymes; the expression of some of these genes is increased as soon as the insect larvae are exposed to nicotine in their food. Ian Baldwin and his team identified the DNA sequences of CYP genes in Manduca sexta and were able to switch off these genes using RNAi technology, but expressed in the plant.

Using plants to silence insect genes

RNA interference (RNAi) is triggered by the production of double-stranded RNA (dsRNA) comprising about 300 base pairs in the cells of tobacco plants. If larvae feed on these plant, the RNA is released in the insect gut. In the experiments, the dsRNA harbored the sequence of the insect gene,CYP6B46, a special cytochrome P450 oxidoreductase specific for Manduca sexta larvae. In a next step, the dsRNA was enzymatically broken down into smaller RNA segments; a special enzyme complex called RISC (RNA-induced silencing complex), which carries several of these RNA segments, specifically binds to the messenger RNA (mRNA) of the CYP6B46 gene and disassembles the mRNA in such a way that the cytochrome P450 enzyme cannot be produced anymore. “We were impressed by the high specificity of these RNAi experiments. The analysis of mRNA transcripts of closely related CYP6 genes revealed that only the CYP6B46 gene was silenced. This means that there was no collateral damage from the procedure: the gene silencing worked on only one targeted gene,” says Ian Baldwin.

The use of additional CYP RNAi probes revealed further interesting results: Young caterpillars which had ingested dsRNA of the CYP4M3 gene gained significantly less weight within 14 days in comparison to larvae reared on control plants – very likely a consequence of the nicotine and its toxic effect which had been restored by switching off the CYP gene. The RNAi experiments had been conducted using plant viral vectors. Unlike genetically transformed tobacco plants in which CYP dsRNA is produced constitutively, the virus vector-based technique provides dsRNA transiently produced in wildtype tobacco plants. Both methods worked well but the “plant virus-based dsRNA producing system” (VDPS) allows for a throughput of RNAi samples that is four times faster. Many unknown functions of different insect genes involved in the adaptation of insects to their environment can now be analyzed using the VDPS technique.
However, it is still unclear how the individual steps in the RNAi mechanism – from producing dsRNA in the plant cell via their uptake in the insect gut to the silencing of the detoxification genes – are accomplished to induce a maximum effect. One experiment provided some interesting information: If the enzymatic step which dices dsRNA into small fragments is inhibited in the experimental plants, the amount of transcripts of the detoxification gene was reduced even further. Therefore the plant mediated RNAi procedure may be more effective, if the caterpillars ingest complete dsRNA instead of smaller diced RNA segments. [JWK, AO]

Original Publication:
Kumar, P., Pandit, S.S., Baldwin, I.T.: Tobacco Rattle Virus vector: A rapid and transient means of silencing Manduca sexta genes by plant mediated RNA interference. PLoS ONE, DOI: 10.1371/journal.pone.0031347

Further Information:
Prof. Dr. Ian T. Baldwin, MPI for Chemical Ecology, Jena
Tel.: 03641 - 57 1100, baldwin@ice.mpg.de
Picture Material:
Angela Overmeyer M.A., Tel. 03641 - 57 2110, overmeyer@ice.mpg.de
or Download via http://www.ice.mpg.de/ext/735.html

Dr. Jan-Wolfhard Kellmann | Max-Planck-Institut
Further information:
http://www.ice.mpg.de

More articles from Life Sciences:

nachricht Bare bones: Making bones transparent
27.04.2017 | California Institute of Technology

nachricht Link Discovered between Immune System, Brain Structure and Memory
26.04.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>