Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Yeast in a Shell

04.11.2009
Coating individual living yeast cells with silicon dioxide

Our breakfast egg is a peculiarity of nature: a single cell protected by a thin mineral layer. Apart from a number of tiny radiolaria and diatoms, individual cells normally do not have a hard shell.

Korean researchers have now developed a strategy for equipping individual cells of baker’s yeast, Saccharomyces cerevisiae, with a synthetic shell made of silicon dioxide. As the team led by Insung S. Choi reports in the journal Angewandte Chemie, the lifespan of these coated yeast cells is tripled, whilst their division is suppressed. The shell also protects the cells from unfavorable external conditions.

Whereas other research efforts previously succeeded in coating yeast cells with a phosphate mineral layer, individual cells have not previously been encapsulated in silicon dioxide. Inspired by the natural shell formation of diatoms, the researchers developed a biomimetic process to coat individual cells under mild physiological conditions. The surfaces of diatoms are covered with special long-chain molecules that contain many positively charged groups of atoms and initiate biomineralization.

The researchers imitated this process by equipping the cell membranes of the yeast cells with synthetic polymers, always alternating layers with many positive charges and layers with many negative charges -- a total of 21 layers. When the yeast cells that have been treated in this way are placed in a solution containing negatively charged silicic acid compounds, these dock onto the outermost positively charged layer of the yeast shell. There they mineralize to silicon dioxide and completely encapsulate the yeast cells.

Genetically modified yeasts are used to produce important pharmaceutical agents. In molecular biological research, easily cultivated yeasts are often used for fundamental investigations of cellular processes and for the diagnosis of human diseases. The protection and improved shelf life possible because of the shell could enable new avenues of research. In addition, the shell could act as a scaffold for the introduction of modifications to the chemical and biological properties.

Author: Insung S. Choi, KAIST, Daejeon (Republic of Korea), http://cisgroup.kaist.ac.kr/

Title: Biomimetic Encapsulation of Individual Cells with Silica

Angewandte Chemie International Edition, doi: 10.1002/anie.200903010

Insung S. Choi | Angewandte Chemie
Further information:
http://cisgroup.kaist.ac.kr/
http://pressroom.angewandte.org

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>