Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Yale researchers may have uncovered the mechanism by which progesterone prevents preterm birth

05.02.2010
Researchers at Yale School of Medicine believe they may have discovered how the hormone progesterone acts to prevent preterm birth.

The findings will be presented at the Annual Scientific Meeting of the Society for Maternal-Fetal Medicine (SMFM) in Chicago by Errol Norwitz, M.D., professor in the Department of Obstetrics, Gynecology & Reproductive Sciences at Yale.

Preterm birth—delivery prior to 37 weeks gestation—has become increasingly common over the past 40 years. Currently, one in eight pregnancies in the U.S. are delivered prematurely. These premature infants are at least seven times more likely to die or have long-term neurologic injury compared with infants delivered at term. Efforts to date to prevent preterm birth have been largely unsuccessful. Several recent studies have suggested that progesterone supplementation from weeks 16-20 of gestation through 36 weeks may prevent preterm birth in about one-third of high-risk women, but the molecular mechanism by which progesterone acts was not known until now.

One-third of preterm birth is linked to premature rupture of the fetal membranes. Prior studies have suggested that rupture results from weakening of the membranes by apoptosis (programmed cell death). Norwitz and his Yale colleagues have shown for the first time that progesterone can prevent apoptosis in fetal membranes.

"We were able to demonstrate that progesterone prevents apoptosis in an artificial environment in the laboratory in which we stimulated healthy fetal membranes with pro-inflammatory mediators," said Norwitz. "Interestingly, and somewhat unexpectedly, we also saw an inhibition of apoptosis under basal conditions without the presence of pro-inflammatory mediators. This suggests that the same mechanism may also be important for the normal onset of labor at term."

Co-authors on the study include Yale researchers Guoyang Luo, M.D., Vikki M. Abrahams, Serkaiem Tadesse, Edmund F. Funai, M.D., and Eric J. Hodgson, M.D.

Karen N. Peart | EurekAlert!
Further information:
http://www.yale.edu

More articles from Life Sciences:

nachricht Ambush in a petri dish
24.11.2017 | Friedrich-Schiller-Universität Jena

nachricht Meadows beat out shrubs when it comes to storing carbon
23.11.2017 | Norwegian University of Science and Technology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New proton record: Researchers measure magnetic moment with greatest possible precision

High-precision measurement of the g-factor eleven times more precise than before / Results indicate a strong similarity between protons and antiprotons

The magnetic moment of an individual proton is inconceivably small, but can still be quantified. The basis for undertaking this measurement was laid over ten...

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

IceCube experiment finds Earth can block high-energy particles from nuclear reactions

24.11.2017 | Physics and Astronomy

A 'half-hearted' solution to one-sided heart failure

24.11.2017 | Health and Medicine

Heidelberg Researchers Study Unique Underwater Stalactites

24.11.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>