Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Yale researchers may have uncovered the mechanism by which progesterone prevents preterm birth

05.02.2010
Researchers at Yale School of Medicine believe they may have discovered how the hormone progesterone acts to prevent preterm birth.

The findings will be presented at the Annual Scientific Meeting of the Society for Maternal-Fetal Medicine (SMFM) in Chicago by Errol Norwitz, M.D., professor in the Department of Obstetrics, Gynecology & Reproductive Sciences at Yale.

Preterm birth—delivery prior to 37 weeks gestation—has become increasingly common over the past 40 years. Currently, one in eight pregnancies in the U.S. are delivered prematurely. These premature infants are at least seven times more likely to die or have long-term neurologic injury compared with infants delivered at term. Efforts to date to prevent preterm birth have been largely unsuccessful. Several recent studies have suggested that progesterone supplementation from weeks 16-20 of gestation through 36 weeks may prevent preterm birth in about one-third of high-risk women, but the molecular mechanism by which progesterone acts was not known until now.

One-third of preterm birth is linked to premature rupture of the fetal membranes. Prior studies have suggested that rupture results from weakening of the membranes by apoptosis (programmed cell death). Norwitz and his Yale colleagues have shown for the first time that progesterone can prevent apoptosis in fetal membranes.

"We were able to demonstrate that progesterone prevents apoptosis in an artificial environment in the laboratory in which we stimulated healthy fetal membranes with pro-inflammatory mediators," said Norwitz. "Interestingly, and somewhat unexpectedly, we also saw an inhibition of apoptosis under basal conditions without the presence of pro-inflammatory mediators. This suggests that the same mechanism may also be important for the normal onset of labor at term."

Co-authors on the study include Yale researchers Guoyang Luo, M.D., Vikki M. Abrahams, Serkaiem Tadesse, Edmund F. Funai, M.D., and Eric J. Hodgson, M.D.

Karen N. Peart | EurekAlert!
Further information:
http://www.yale.edu

More articles from Life Sciences:

nachricht Molecular microscopy illuminates molecular motor motion
26.07.2017 | Penn State

nachricht New virus discovered in migratory bird in Rio Grande do Sul, Brazil
26.07.2017 | Fundação de Amparo à Pesquisa do Estado de São Paulo

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

CCNY physicists master unexplored electron property

26.07.2017 | Physics and Astronomy

Molecular microscopy illuminates molecular motor motion

26.07.2017 | Life Sciences

Large-Mouthed Fish Was Top Predator After Mass Extinction

26.07.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>