Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Yale researchers may have uncovered the mechanism by which progesterone prevents preterm birth

05.02.2010
Researchers at Yale School of Medicine believe they may have discovered how the hormone progesterone acts to prevent preterm birth.

The findings will be presented at the Annual Scientific Meeting of the Society for Maternal-Fetal Medicine (SMFM) in Chicago by Errol Norwitz, M.D., professor in the Department of Obstetrics, Gynecology & Reproductive Sciences at Yale.

Preterm birth—delivery prior to 37 weeks gestation—has become increasingly common over the past 40 years. Currently, one in eight pregnancies in the U.S. are delivered prematurely. These premature infants are at least seven times more likely to die or have long-term neurologic injury compared with infants delivered at term. Efforts to date to prevent preterm birth have been largely unsuccessful. Several recent studies have suggested that progesterone supplementation from weeks 16-20 of gestation through 36 weeks may prevent preterm birth in about one-third of high-risk women, but the molecular mechanism by which progesterone acts was not known until now.

One-third of preterm birth is linked to premature rupture of the fetal membranes. Prior studies have suggested that rupture results from weakening of the membranes by apoptosis (programmed cell death). Norwitz and his Yale colleagues have shown for the first time that progesterone can prevent apoptosis in fetal membranes.

"We were able to demonstrate that progesterone prevents apoptosis in an artificial environment in the laboratory in which we stimulated healthy fetal membranes with pro-inflammatory mediators," said Norwitz. "Interestingly, and somewhat unexpectedly, we also saw an inhibition of apoptosis under basal conditions without the presence of pro-inflammatory mediators. This suggests that the same mechanism may also be important for the normal onset of labor at term."

Co-authors on the study include Yale researchers Guoyang Luo, M.D., Vikki M. Abrahams, Serkaiem Tadesse, Edmund F. Funai, M.D., and Eric J. Hodgson, M.D.

Karen N. Peart | EurekAlert!
Further information:
http://www.yale.edu

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>