Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

World record for DNA analysis

08.03.2011
Up to today, researchers have been limited to running just a few DNA samples at a time, at a cost of SEK 100,000 (c. USD 16,000) per run.

Now researchers at the Royal Institute of Technology (KTH) in Stockholm have hit upon a new method that allows 5,000 samples to be run at the same time and at the same price. This cuts the cost per sample result considerably and constitutes a world record for the number of tests run in a single DNA sequencing analysis.

“We were virtually forced to invent a method for running numerous DNA tests at once. Otherwise our analyses would have taken an incredibly long time and would have cost enormous sums of money,” says Peter Savolainen, a researcher in biology at KTH.

He, his research colleague Afshin Ahmadian, and the then doctoral candidate Mårten Neiman jointly invented the new method, which means that DNA sequencing analyses can be performed both in record time and at an improbably low cost.

“Today the great majority of samples are run ten at a time. This yields a cost of SEK 10,000 (c. USD 1,600) per sample. We have run 5,000 samples at the same time at the same cost, that is, SEK 100,000. This computes to SEK 20 (c. USD 3) per sample,” says Peter Savolainen.

He points out several areas where his and his colleagues’ new method can have a great impact. One of them is cancer research, where there is a great need to scan numerous cell samples from many individuals. This is to see which cells and genes are involved in the cancer.

“Another field where our method can be of huge importance is in organ transplants. Many DNA analyses are needed to create a database for matching organ donors with transplant recipients. This will be of major importance to DNA research,” says Peter Savolainen.

He adds that now, even before the method is official, there are several projects at the Science for Life Laboratory (where KTH is involved) in line to use this mode of analysis. What’s more, it is possible to scale up the method so that even more samples can be tested simultaneously.

“Simply put, we mark each sample in an ingenious way with an ID, so each test result can be distinguished,” says Peter Savolainen.

Afshin Ahmadian and Peter Savolainen are KTH scientists who are active at the Science for Life Laboratory.

For more information, please contact Afshin Ahmadian at phone: +46 (0)8 – 524 81 450 / afshin.ahmadian@scilifelab.se or Peter Savolainen +46 (0)8 - 55 378 335 / savo@kth.se

Peter Larsson | idw
Further information:
http://www.vr.se

More articles from Life Sciences:

nachricht Complementing conventional antibiotics
24.05.2018 | Goethe-Universität Frankfurt am Main

nachricht Building a brain, cell by cell: Researchers make a mini neuron network (of two)
23.05.2018 | Institute of Industrial Science, The University of Tokyo

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

When corals eat plastics

24.05.2018 | Ecology, The Environment and Conservation

Surgery involving ultrasound energy found to treat high blood pressure

24.05.2018 | Medical Engineering

First chip-scale broadband optical system that can sense molecules in the mid-IR

24.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>