Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Wine yeasts reveal prehistoric microbial world

11.05.2011
When having a glass of wine or beer, have you ever wondered why and how yeast “learnt” to produce these superb food products?

Yeasts are unicellular fungi and so far over 1 500 different species have been described. Among them are important industrial organisms, pathogens and model organisms which help us to understand how eukaryotic cells work.

However, one of the most well-known characteristics of yeast is the ability of Saccharomyces cerevisiae, baker’s yeast, to ferment sugar to 2-carbon components, in particular ethanol, without completely oxidising it to carbon dioxide, even in the presence of oxygen, as many other microbes do. This fermentative ability is essential for the production of wine, beer and many other alcoholic beverages.

Why do Saccharomyces yeasts actually do this and what were the driving forces behind the evolution of this phenomenon?

For several years, the yeast molecular genetics group at Lund University in Sweden and their counterparts in Milan have been trying to reconstruct the evolutionary history of ethanol production. In their recent article published in Nature Communications (http://dx.doi.org/10.1038/ncomms1305) they compared two wine yeasts, S. cerevisiae and Dekkera bruxellensis, which in nature often occupy a similar niche, using a variety of approaches including comparative genomics which enabled them to add the time dimension to their molecular reconstructions.

The two yeasts studied are not very closely related and the two lineages separated more than 200 million years ago. However, approximately 100–150 million years ago, both yeasts experienced very similar environmental conditions, with the sudden appearance of modern fruits containing high amounts of available sugars, and environmental pressures, such as fierce competition from other microbes. Both lineages, independently and in parallel, developed the ability to make and accumulate ethanol in the presence of oxygen, and resistance to high ethanol concentration, and have been using this ability as a weapon to outcompete other microbes which are very sensitive to ethanol. Surprisingly, both yeasts used the same molecular tool, global promoter rewiring, to change the regulation pattern of the expression of hundreds of genes involved in sugar degradation.

“Our results now help to reconstruct the original environment and evolutionary trends that operated within the microbial community in the remote past,” says Jure Piškur, who is a professor of molecular genetics at Lund University and at the University of Nova Gorica, Slovenia.

“In addition, we can now use the knowledge we have obtained to develop new yeast strains, which could be beneficial for wine and beer fermentation and in biofuel production.”

For more information, please contact:
Jure Piškur, Professor of Molecular Genetics at Lund University
tel.: +46 46 2228373 or +46 70 3457103
email: Jure.Piskur@biol.lu.se

Megan Grindlay | idw
Further information:
http://www.vr.se
http://www.nature.com/ncomms/journal/v2/n5/full/ncomms1305.html

More articles from Life Sciences:

nachricht Making fuel out of thick air
08.12.2017 | DOE/Argonne National Laboratory

nachricht ‘Spying’ on the hidden geometry of complex networks through machine intelligence
08.12.2017 | Technische Universität Dresden

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

Im Focus: A transistor of graphene nanoribbons

Transistors based on carbon nanostructures: what sounds like a futuristic dream could be reality in just a few years' time. An international research team working with Empa has now succeeded in producing nanotransistors from graphene ribbons that are only a few atoms wide, as reported in the current issue of the trade journal "Nature Communications."

Graphene ribbons that are only a few atoms wide, so-called graphene nanoribbons, have special electrical properties that make them promising candidates for the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

Blockchain is becoming more important in the energy market

05.12.2017 | Event News

 
Latest News

Making fuel out of thick air

08.12.2017 | Life Sciences

Rules for superconductivity mirrored in 'excitonic insulator'

08.12.2017 | Information Technology

Smartphone case offers blood glucose monitoring on the go

08.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>